A184628 Floor(1/frac((4+n^4)^(1/4))), where frac(x) is the fractional part of x.
2, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 85184, 91125, 97336, 103823, 110592, 117649, 125000, 132651, 140608, 148877, 157464, 166375
Offset: 1
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Programs
-
Mathematica
p[n_]:=FractionalPart[(n^4+4)^(1/4)]; q[n_]:=Floor[1/p[n]]; Table[q[n],{n,1,80}] FindLinearRecurrence[Table[q[n],{n,1,1000}]] Join[{2}, LinearRecurrence[{4, -6, 4, -1}, {8, 27, 64, 125}, 54]] (* Ray Chandler, Aug 01 2015 *)
Formula
a(n) = floor(1/{(4+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=4a(n-1)-6a(n-2)+4a(n-3)-a(n-4) for n>=6 and that a(n)=n^3 for n>=2.
Empirical g.f.: x*(x^4-4*x^3+7*x^2+2) / (x-1)^4. - Colin Barker, Sep 06 2014
Comments