A184630 Floor(1/{(6+n^4)^(1/4)}), where {}=fractional part.
1, 6, 18, 43, 83, 144, 228, 341, 486, 666, 887, 1152, 1464, 1829, 2250, 2730, 3275, 3888, 4572, 5333, 6174, 7098, 8111, 9216, 10416, 11717, 13122, 14634, 16259, 18000, 19860, 21845, 23958, 26202, 28583, 31104, 33768, 36581, 39546, 42666, 45947, 49392, 53004, 56789, 60750, 64890, 69215, 73728, 78432, 83333, 88434
Offset: 1
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 2, -3, 3, -1).
Crossrefs
Cf. A184536.
Programs
-
Mathematica
p[n_]:=FractionalPart[(n^4+6)^(1/4)]; q[n_]:=Floor[1/p[n]]; Table[q[n], {n, 1, 80}] FindLinearRecurrence[Table[q[n], {n, 1, 1000}]] Join[{1,6,18,43},LinearRecurrence[{3,-3,2,-3,3,-1},{83,144,228,341,486,666},47]] (* Ray Chandler, Aug 02 2015 *)
Formula
a(n)=floor(1/{(6+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+2a(n-3)-3a(n-4)+3a(n-5)-a(n-6) for n>=11, which implies a(n) = (2*n^3-1+A049347(n))/3 for n>=5.