A184632 Floor(1/{(8+n^4)^(1/4)}), where {}=fractional part.
1, 4, 13, 32, 62, 108, 171, 256, 364, 500, 665, 864, 1098, 1372, 1687, 2048, 2456, 2916, 3429, 4000, 4630, 5324, 6083, 6912, 7812, 8788, 9841, 10976, 12194, 13500, 14895, 16384, 17968, 19652, 21437, 23328, 25326, 27436, 29659, 32000, 34460, 37044, 39753, 42592, 45562, 48668, 51911, 55296, 58824, 62500, 66325, 70304, 74438, 78732, 83187, 87808, 92596, 97556, 102689, 108000
Offset: 1
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (3, -2, -2, 3, -1).
Programs
-
Mathematica
p[n_]:=FractionalPart[(n^4+8)^(1/4)]; q[n_]:=Floor[1/p[n]]; Table[q[n], {n, 1, 80}] FindLinearRecurrence[Table[q[n], {n, 1, 1000}]] Join[{1},LinearRecurrence[{3,-2,-2,3,-1},{4,13,32,62,108},59]] (* Ray Chandler, Aug 02 2015 *)
Formula
a(n)=floor(1/{(8+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-2a(n-2)-2a(n-3)+3a(n-4)-a(n-5) for n>=7.