A184633 Floor(1/{(9+n^4)^(1/4)}), where {} = fractional part.
1, 4, 12, 28, 55, 96, 152, 227, 324, 444, 591, 768, 976, 1219, 1500, 1820, 2183, 2592, 3048, 3555, 4116, 4732, 5407, 6144, 6944, 7811, 8748, 9756, 10839, 12000, 13240, 14563, 15972, 17468, 19055, 20736, 22512, 24387, 26364, 28444, 30631, 32928, 35336, 37859, 40500, 43260, 46143, 49152, 52288, 55555, 58956, 62492, 66167, 69984, 73944, 78051, 82308, 86716, 91279, 96000, 100880, 105923, 111132, 116508, 122055, 127776, 133672, 139747, 146004, 152444, 159071, 165888, 172896, 180099, 187500
Offset: 1
Keywords
Links
- Edward Jiang and Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Edward Jiang)
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 2, -3, 3, -1).
Crossrefs
Cf. A184536.
Programs
-
Mathematica
p[n_]:=FractionalPart[(n^4+9)^(1/4)]; q[n_]:=Floor[1/p[n]]; Table[q[n], {n, 1, 80}] FindLinearRecurrence[Table[q[n], {n, 1, 1000}]] Join[{1,4},LinearRecurrence[{3,-3,2,-3,3,-1},{12,28,55,96,152,227},73]] (* Ray Chandler, Aug 02 2015 *)
-
PARI
a(n)=my(t=(9+n^4)^(1/4)); 1\(t-t\1) \\ Charles R Greathouse IV, Sep 12 2014
Formula
a(n) = floor(1/{(9+n^4)^(1/4)}), where {} = fractional part.
It appears that a(n) = 3a(n-1)-3a(n-2)+2a(n-3)-3a(n-4)+3a(n-5)-a(n-6) for n>=9.
Empirical g.f.: x*(x+1)*(x^6-3*x^5+3*x^4-x^3+3*x^2+1) / ((x-1)^4*(x^2+x+1)). - Colin Barker, Jun 13 2015