cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184633 Floor(1/{(9+n^4)^(1/4)}), where {} = fractional part.

Original entry on oeis.org

1, 4, 12, 28, 55, 96, 152, 227, 324, 444, 591, 768, 976, 1219, 1500, 1820, 2183, 2592, 3048, 3555, 4116, 4732, 5407, 6144, 6944, 7811, 8748, 9756, 10839, 12000, 13240, 14563, 15972, 17468, 19055, 20736, 22512, 24387, 26364, 28444, 30631, 32928, 35336, 37859, 40500, 43260, 46143, 49152, 52288, 55555, 58956, 62492, 66167, 69984, 73944, 78051, 82308, 86716, 91279, 96000, 100880, 105923, 111132, 116508, 122055, 127776, 133672, 139747, 146004, 152444, 159071, 165888, 172896, 180099, 187500
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Cf. A184536.

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+9)^(1/4)]; q[n_]:=Floor[1/p[n]];
      Table[q[n], {n, 1, 80}]
      FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{1,4},LinearRecurrence[{3,-3,2,-3,3,-1},{12,28,55,96,152,227},73]] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    a(n)=my(t=(9+n^4)^(1/4)); 1\(t-t\1) \\ Charles R Greathouse IV, Sep 12 2014

Formula

a(n) = floor(1/{(9+n^4)^(1/4)}), where {} = fractional part.
It appears that a(n) = 3a(n-1)-3a(n-2)+2a(n-3)-3a(n-4)+3a(n-5)-a(n-6) for n>=9.
Empirical g.f.: x*(x+1)*(x^6-3*x^5+3*x^4-x^3+3*x^2+1) / ((x-1)^4*(x^2+x+1)). - Colin Barker, Jun 13 2015