cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184634 a(n) = floor(1/{(10+n^4)^(1/4)}), where {}=fractional part.

Original entry on oeis.org

1, 3, 11, 25, 50, 86, 137, 204, 291, 400, 532, 691, 878, 1097, 1350, 1638, 1965, 2332, 2743, 3200, 3704, 4259, 4866, 5529, 6250, 7030, 7873, 8780, 9755, 10800, 11916, 13107, 14374, 15721, 17150, 18662, 20261, 21948, 23727, 25600, 27568, 29635, 31802, 34073, 36450, 38934, 41529, 44236, 47059, 50000, 53060, 56243, 59550, 62985, 66550, 70246, 74077, 78044, 82151, 86400, 90792, 95331, 100018, 104857, 109850, 114998, 120305, 125772, 131403, 137200
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Cf. A184536.

Programs

  • Maple
    f:= proc(n) local k, t;
      t:= n mod 5;
      k:= (n-t)/5;
      [50*k^3, 50*k^3 + 30*k^2 + 6*k,
    50*k^3 + 60*k^2 + 24*k + 3,
    50*k^3 + 90*k^2 + 54*k + 10,
    50*k^3 + 120*k^2 + 96*k + 25][t+1]
    end proc:
    f(1):= 1: f(3):= 11:
    map(f, [$1..100]); # Robert Israel, Feb 25 2019
  • Mathematica
    p[n_]:=FractionalPart[(n^4+10)^(1/4)];
    q[n_]:=Floor[1/p[n]];
    Table[q[n], {n, 1, 80}]
    FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{1,3,11},LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{25,50,86,137,204,291,400,532},67]] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    a(n)=1\frac(sqrtn(n^4+10,4)) \\ Charles R Greathouse IV, Feb 07 2016

Formula

a(n)=floor(1/{(10+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-5)-3a(n-6)+3a(n-7)-a(n-8).
From Robert Israel, Feb 25 2019: (Start)
2*n^3/5 + 3/(2*n) > 1/{(10+n^4)^(1/4)} > 2*n^3/5 for all n.
From this we can show that a(5*k) = 50*k^3 for k >= 1,
a(5*k+1) = 50*k^3 + 30*k^2 + 6*k for k >= 1,
a(5*k+2) = 50*k^3 + 60*k^2 + 24*k + 3,
a(5*k+3) = 50*k^3 + 90*k^2 + 54*k + 10 for k >= 1,
a(5*k+4) = 50*k^3 + 120*k^2 + 96*k + 25.
This implies the conjectured recurrence for n >= 12. (End)