A184634 a(n) = floor(1/{(10+n^4)^(1/4)}), where {}=fractional part.
1, 3, 11, 25, 50, 86, 137, 204, 291, 400, 532, 691, 878, 1097, 1350, 1638, 1965, 2332, 2743, 3200, 3704, 4259, 4866, 5529, 6250, 7030, 7873, 8780, 9755, 10800, 11916, 13107, 14374, 15721, 17150, 18662, 20261, 21948, 23727, 25600, 27568, 29635, 31802, 34073, 36450, 38934, 41529, 44236, 47059, 50000, 53060, 56243, 59550, 62985, 66550, 70246, 74077, 78044, 82151, 86400, 90792, 95331, 100018, 104857, 109850, 114998, 120305, 125772, 131403, 137200
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 1, 0, 1, -3, 3, -1).
Crossrefs
Cf. A184536.
Programs
-
Maple
f:= proc(n) local k, t; t:= n mod 5; k:= (n-t)/5; [50*k^3, 50*k^3 + 30*k^2 + 6*k, 50*k^3 + 60*k^2 + 24*k + 3, 50*k^3 + 90*k^2 + 54*k + 10, 50*k^3 + 120*k^2 + 96*k + 25][t+1] end proc: f(1):= 1: f(3):= 11: map(f, [$1..100]); # Robert Israel, Feb 25 2019
-
Mathematica
p[n_]:=FractionalPart[(n^4+10)^(1/4)]; q[n_]:=Floor[1/p[n]]; Table[q[n], {n, 1, 80}] FindLinearRecurrence[Table[q[n], {n, 1, 1000}]] Join[{1,3,11},LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{25,50,86,137,204,291,400,532},67]] (* Ray Chandler, Aug 02 2015 *)
-
PARI
a(n)=1\frac(sqrtn(n^4+10,4)) \\ Charles R Greathouse IV, Feb 07 2016
Formula
a(n)=floor(1/{(10+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-5)-3a(n-6)+3a(n-7)-a(n-8).
From Robert Israel, Feb 25 2019: (Start)
2*n^3/5 + 3/(2*n) > 1/{(10+n^4)^(1/4)} > 2*n^3/5 for all n.
From this we can show that a(5*k) = 50*k^3 for k >= 1,
a(5*k+1) = 50*k^3 + 30*k^2 + 6*k for k >= 1,
a(5*k+2) = 50*k^3 + 60*k^2 + 24*k + 3,
a(5*k+3) = 50*k^3 + 90*k^2 + 54*k + 10 for k >= 1,
a(5*k+4) = 50*k^3 + 120*k^2 + 96*k + 25.
This implies the conjectured recurrence for n >= 12. (End)