cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184639 Number of partitions of n having no parts with multiplicity 4.

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 10, 14, 19, 27, 37, 50, 67, 88, 115, 153, 196, 253, 324, 412, 524, 661, 828, 1036, 1290, 1603, 1980, 2443, 2997, 3671, 4487, 5460, 6631, 8034, 9703, 11703, 14075, 16890, 20226, 24175, 28838, 34332, 40801, 48394, 57307, 67765, 79974
Offset: 0

Views

Author

Alois P. Heinz, Jan 18 2011

Keywords

Examples

			a(4) = 4, because 4 partitions of 4 have no parts with multiplicity 4: [1,1,2], [2,2], [1,3], [4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->`if`(j=4, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> (l-> l[1]-l[2])(b(n, n)):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, Sum[Function[l, If[j == 4, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
    a[n_] := b[n, n][[1]] - b[n, n][[2]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

Formula

a(n) = A000041(n) - A183561(n).
a(n) = A183568(n,0) - A183568(n,4).
G.f.: Product_{j>0} (1-x^(4*j)+x^(5*j))/(1-x^j).
a(n) ~ exp(sqrt((Pi^2/3 + 4*r)*n)) * sqrt(Pi^2/6 + 2*r) / (4*Pi*n), where r = Integral_{x=0..oo} log(1 + exp(-x) - exp(-4*x) + exp(-6*x)) dx = 0.77101366877372033648945034346499691865027592089088481444183... - Vaclav Kotesovec, Jun 12 2025