A184640 Number of partitions of n having no parts with multiplicity 5.
1, 1, 2, 3, 5, 6, 11, 14, 21, 28, 39, 51, 72, 92, 124, 160, 210, 266, 349, 438, 562, 704, 892, 1107, 1395, 1720, 2141, 2631, 3249, 3965, 4873, 5916, 7216, 8730, 10585, 12742, 15387, 18443, 22151, 26466, 31646, 37659, 44873, 53212, 63149, 74666, 88295
Offset: 0
Keywords
Examples
a(5) = 6, because 6 partitions of 5 have no parts with multiplicity 5: [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->`if`(j=5, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> (l-> l[1]-l[2])(b(n, n)): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 5, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]]; a[n_] := b[n, n][[1]] - b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
Formula
G.f.: Product_{j>0} (1-x^(5*j)+x^(6*j))/(1-x^j).
a(n) ~ exp(sqrt((Pi^2/3 + 4*r)*n)) * sqrt(Pi^2/6 + 2*r) / (4*Pi*n), where r = Integral_{x=0..oo} log(1 + exp(-x) - exp(-5*x) + exp(-7*x)) dx = 0.78834765570757713777493985857868631321765157344539753651545... - Vaclav Kotesovec, Jun 12 2025