A184642 Number of partitions of n having no parts with multiplicity 7.
1, 1, 2, 3, 5, 7, 11, 14, 22, 29, 41, 54, 75, 97, 130, 168, 222, 283, 368, 465, 597, 750, 949, 1183, 1488, 1841, 2292, 2822, 3487, 4267, 5239, 6376, 7782, 9429, 11439, 13798, 16661, 20007, 24043, 28763, 34420, 41021, 48894, 58066, 68956, 81627, 96592
Offset: 0
Keywords
Examples
a(7) = 14, because 14 partitions of 7 have no parts with multiplicity 7: [1,1,1,1,1,2], [1,1,1,2,2], [1,2,2,2], [1,1,1,1,3], [1,1,2,3], [2,2,3], [1,3,3], [1,1,1,4], [1,2,4], [3,4], [1,1,5], [2,5], [1,6], [7].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->`if`(j=7, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> (l-> l[1]-l[2])(b(n, n)): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 7, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]]; a[n_] := b[n, n][[1]] - b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *) Table[Count[IntegerPartitions[n],?(FreeQ[Length/@Split[#],7]&)],{n,0,50}] (* _Harvey P. Dale, Sep 21 2024 *)
Formula
G.f.: Product_{j>0} (1-x^(7*j)+x^(8*j))/(1-x^j).
a(n) ~ exp(sqrt((Pi^2/3 + 4*r)*n)) * sqrt(Pi^2/6 + 2*r) / (4*Pi*n), where r = Integral_{x=0..oo} log(1 + exp(-x) - exp(-7*x) + exp(-9*x)) dx = 0.80430417180776436899064351977235191494130305607975798117531... - Vaclav Kotesovec, Jun 12 2025