A184643 Number of partitions of n having no parts with multiplicity 8.
1, 1, 2, 3, 5, 7, 11, 15, 21, 30, 41, 55, 75, 99, 131, 172, 223, 288, 372, 474, 603, 764, 962, 1206, 1509, 1876, 2326, 2878, 3543, 4351, 5330, 6506, 7921, 9623, 11655, 14085, 16987, 20434, 24529, 29392, 35138, 41930, 49947, 59381, 70474, 83512, 98779
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->`if`(j=8, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> (l-> l[1]-l[2])(b(n, n)): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 8, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]]; a[n_] := b[n, n][[1]] - b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
Formula
G.f.: Product_{j>0} (1-x^(8*j)+x^(9*j))/(1-x^j).
a(n) ~ exp(sqrt((Pi^2/3 + 4*r)*n)) * sqrt(Pi^2/6 + 2*r) / (4*Pi*n), where r = Integral_{x=0..oo} log(1 + exp(-x) - exp(-8*x) + exp(-10*x)) dx = 0.80836901097063952622501649557292291036896118821761722817375... - Vaclav Kotesovec, Jun 12 2025