cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184792 Numbers k such that floor(k*r) is prime, where r = golden ratio=(1+sqrt(5))/2.

Original entry on oeis.org

2, 7, 11, 12, 18, 23, 27, 33, 37, 38, 42, 44, 49, 60, 63, 64, 70, 79, 81, 85, 86, 101, 107, 111, 112, 122, 123, 131, 138, 142, 148, 149, 159, 163, 168, 174, 175, 190, 194, 196, 205, 215, 216, 222, 227, 231, 237, 241, 248, 253, 259, 268, 274, 278, 283, 285, 289, 301, 304, 309, 311, 315, 322, 348, 352, 353, 357, 363, 367, 372, 379, 383, 390, 398, 400, 404, 409, 416, 419, 457, 468, 478, 487, 493, 500, 508, 509, 519, 530, 531, 545, 546, 561, 568, 582, 589, 598
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Examples

			The sequence L(n)=floor(n*r) begins with
1,3,4,6,8,9,11,12,14,16,17,...,
which includes the primes L(2)=3, L(7)=11,...
		

Crossrefs

Programs

  • Mathematica
    r=(1+5^(1/2))/2; s=r/(r-1);
    a[n_]:=Floor [n*r];  (* A095280 *)
    b[n_]:=Floor [n*s];  (* A095281 *)
    Table[a[n],{n,1,120}]
    t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1
    t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2
    t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,300}];t3
    t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}];t4
    t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}];t5
    t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,300}];t6
    (* The lists t1, t2, t3, t4, t5, t6 match the sequences
    A095280, A184792, A184793, A095281, A184794, A184795 *)
    Select[Range[600],PrimeQ[Floor[GoldenRatio #]]&] (* Harvey P. Dale, Mar 28 2024 *)