A184820 a(n) = n + floor(n/t) + floor(n/t^2), where t is the tribonacci constant.
1, 3, 4, 7, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28, 31, 32, 34, 35, 38, 39, 41, 44, 45, 47, 48, 51, 52, 54, 56, 58, 59, 62, 64, 65, 67, 69, 71, 72, 75, 76, 78, 80, 82, 84, 85, 88, 89, 91, 93, 95, 96, 98, 100, 102, 103, 106, 108, 109, 112, 113, 115, 116, 119, 120, 122, 124, 126, 128, 129, 132, 133, 135, 137, 139, 140, 143, 144, 146, 148, 150, 152, 153, 156, 157, 159, 161, 163, 164, 166, 169, 170, 172, 174, 176, 177, 179, 181, 183, 184, 187, 188, 190, 193, 194, 196, 197, 200, 201, 203, 205, 207, 208, 210, 213, 214, 216, 218, 220, 221, 224, 225, 227, 228, 231, 233, 234, 237, 238, 240, 242, 244, 245, 247
Offset: 1
Keywords
Examples
Let t be the tribonacci constant, then t = 1 + 1/t + 1/t^2 where: t = 1.8392867552..., t^2 = 3.3829757679..., t^3 = 6.2222625231...
Programs
-
PARI
{a(n)=local(t=real(polroots(1+x+x^2-x^3)[1]));n+floor(n/t)+floor(n/t^2)}
Formula
Limit a(n)/n = t = 1.8392867552141611325518525646532866...
a(n) = n + floor(n*p/r) + floor(n*q/r), where p=t, q=t^2, r=t^3, and t is the tribonacci constant (see Clark Kimberling's formula in A184812).
Comments