cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184822 a(n) = n + floor(n*t) + floor(n*t^2), where t is the tribonacci constant.

Original entry on oeis.org

5, 11, 18, 24, 30, 37, 42, 49, 55, 61, 68, 74, 79, 86, 92, 99, 105, 111, 117, 123, 130, 136, 142, 149, 154, 160, 167, 173, 180, 186, 192, 198, 204, 211, 217, 223, 230, 235, 241, 248, 254, 261, 267, 272, 279, 285, 291, 298, 304, 310, 316, 322, 329, 335, 342, 348, 353, 360, 366, 372, 379, 385, 391, 397, 403, 410, 416, 423, 428, 434, 441, 447, 453, 460, 465, 472, 478, 484, 491, 497, 503, 509, 515, 522, 528, 534, 541, 546, 553, 559, 565, 572, 578, 583, 590, 596, 603, 609, 615, 621, 627, 634, 640, 646, 653, 658, 664, 671, 677, 684, 690, 696, 702, 708, 715, 721, 727, 734, 739, 745, 752, 758, 765, 771
Offset: 1

Views

Author

Paul D. Hanna, Jan 22 2011

Keywords

Comments

This is one of three sequences that partition the positive integers.
Given t is the tribonacci constant, then the following sequences are disjoint:
. A184820(n) = n + [n/t] + [n/t^2],
. A184821(n) = n + [n*t] + [n/t],
. A184822(n) = n + [n*t] + [n*t^2], where []=floor.
This is a special case of Clark Kimberling's results given in A184812.

Examples

			Let t be the tribonacci constant, then t^3 = 1 + t + t^2 where:
t = 1.8392867552..., t^2 = 3.3829757679..., t^3 = 6.2222625231...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(t=real(polroots(1+x+x^2-x^3)[1]));n+floor(n*t)+floor(n*t^2)}

Formula

Limit a(n)/n = t^3 = 6.2222625231...
a(n) = n + floor(n*q/p) + floor(n*r/p), where p=t, q=t^2, r=t^3, and t is the tribonacci constant (see Clark Kimberling's formula in A184812).