cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184861 Numbers m such that prime(m) is of the form floor(nr+h), where r=(1+sqrt(5))/2 and h=1/2; complement of A184864.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 20, 21, 22, 23, 24, 25, 28, 30, 32, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 57, 59, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 82, 86, 89, 90, 92, 93, 96, 98, 99, 101, 102, 103, 105, 107, 109, 111, 112, 115, 116, 118, 120, 122, 124, 125, 126, 127, 130, 131, 132, 133, 134, 136, 137, 140, 141, 144, 147, 149, 151, 153, 154, 156, 157, 158, 159, 161, 162, 164
Offset: 1

Views

Author

Clark Kimberling, Jan 23 2011

Keywords

Examples

			See A184859.
		

Crossrefs

Programs

  • Mathematica
    r=(1+5^(1/2))/2; h=1/2; s=r/(r-1);
    a[n_]:=Floor [n*r+h];
    Table[a[n], {n, 1, 120}]  (* A007067 *)
    t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
    t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
    t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
    (* Lists t1, t2, t3 match A184859, A184860, A184861. *)