A184861 Numbers m such that prime(m) is of the form floor(nr+h), where r=(1+sqrt(5))/2 and h=1/2; complement of A184864.
1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 20, 21, 22, 23, 24, 25, 28, 30, 32, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 57, 59, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 82, 86, 89, 90, 92, 93, 96, 98, 99, 101, 102, 103, 105, 107, 109, 111, 112, 115, 116, 118, 120, 122, 124, 125, 126, 127, 130, 131, 132, 133, 134, 136, 137, 140, 141, 144, 147, 149, 151, 153, 154, 156, 157, 158, 159, 161, 162, 164
Offset: 1
Keywords
Examples
See A184859.
Programs
-
Mathematica
r=(1+5^(1/2))/2; h=1/2; s=r/(r-1); a[n_]:=Floor [n*r+h]; Table[a[n], {n, 1, 120}] (* A007067 *) t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3 (* Lists t1, t2, t3 match A184859, A184860, A184861. *)