cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184948 Triangle read by rows: SM(n,m) is the number of symmetric 0-1 matrices of order n such that the total number of 1's is m (n >= 1, 0 <= m <= n^2).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 12, 28, 52, 84, 116, 140, 150, 140, 116, 84, 52, 28, 12, 4, 1, 1, 5, 20, 60, 150, 326, 620, 1060, 1635, 2295, 2952, 3480, 3780, 3780, 3480, 2952, 2295, 1635, 1060, 620, 326, 150, 60, 20, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2011, based on a posting to the Sequence Fans Mailing List by Brendan McKay, Feb 02 2011

Keywords

Examples

			Triangle begins:
SM(1, m) = 1, 1
SM(2, m) = 1, 2, 2, 2, 1
SM(3, m) = 1, 3, 6, 10, 12, 12, 10, 6, 3, 1
SM(4, m) = 1, 4, 12, 28, 52, 84, 116, 140, 150, 140, 116, 84, 52, 28, 12, 4, 1
SM(5, m) = 1, 5, 20, 60, 150, 326, 620, 1060, 1635, 2295, 2952, 3480, 3780, 3780, 3480, 2952, 2295, 1635, 1060, 620, 326, 150, 60, 20, 5, 1
...
		

Crossrefs

Row sums give A006125(n+1).
Cf. A262666.

Programs

  • Mathematica
    row[n_] := CoefficientList[(1+x)^n (1+x^2)^(n(n-1)/2), x];
    Array[row, 5] // Flatten (* Jean-François Alcover, Mar 19 2019 *)
  • PARI
    {SM(n,k)=polcoeff((1+x^2)^(n*(n-1)/2)*(1+x)^n,k)} \\ Paul D. Hanna
    
  • PARI
    {SM(n,k)=local(A); A=sum(m=1, n, x^m*(1+y)^m*prod(k=1, m, (1-x*(1+y)*(1+y^2)^(2*k-2))/(1-x*(1+y)*(1+y^2)^(2*k-1)+x*O(x^n))));polcoeff(polcoeff(A, n,x),k,y)} \\ Paul D. Hanna

Formula

SM(n,m) is the sum of binomial(n,k) * binomial(n*(n-1)/2,(m-k)/2) over those k with the same parity as m. To see this consider that k is the number of 1s on the diagonal.
From Robert Israel, Feb 02 2011: (Start)
According to Maple,
> simplify(sum(binomial(n,2*j)*binomial(r,M-j),j=0..M)) assuming posint;
binomial(r,M)*hypergeom([-M, -1/2*n, 1/2-1/2*n],[1/2, r-M+1],-1)
> simplify(sum(binomial(n,2*k+1)*binomial(r,M-k),k=0..M)) assuming posint;
n*binomial(r,M)*hypergeom([-M, 1-1/2*n, 1/2-1/2*n],[3/2, r-M+1],-1)
If m is even you want the first formula with r=n*(n-1)/2 and M=m/2.
If m is odd the second formula with r=n*(n-1)/2 and M=(m+1)/2.
Thus for n=5 and m=6,
binomial(10,3)*hypergeom([-3,-5/2,-2],[1/2,8],-1) = 620
and for n=5 and m=5,
5*binomial(10,3)*hypergeom([-3, -3/2, -2],[3/2, 8],-1) = 1060. (End)
G.f. for row n: (1+x)^n*(1+x^2)^(n*(n-1)/2) for n>=1. - Paul D. Hanna, Feb 03 2011
G.f.: A(x,y) = Sum_{n>=1} x^n*(1+y)^n*Product_{k=1..n} (1-x(1+y)(1+y^2)^(2k-2))/(1-x(1+y)(1+y^2)^(2k-1)) due to a q-series identity. - Paul D. Hanna, Feb 03 2011
Sum_{k>=0..n^2} k*SM(n,k) = n^2/2 * 2^(n(n+1)/2).
SM(n,m) = Sum_{k=0..floor(m/2)} C(C(n,2),k)*C(n,m-2*k), from equation (11) in the Cameron et al., reference. - L. Edson Jeffery, Feb 29 2012