cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184958 Number of nonincreasing even cycles in all permutations of {1,2,...,n}. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)

Original entry on oeis.org

0, 0, 0, 0, 5, 25, 269, 1883, 20103, 180927, 2172149, 23893639, 326640467, 4246326071, 65675585793, 985133786895, 17069814958319, 290186854291423, 5579050805341613, 106001965301490647, 2241684406438644939, 47075372535211543719
Offset: 0

Views

Author

Emeric Deutsch, Feb 27 2011

Keywords

Examples

			a(4) = 5 because the only permutations of {1,2,3,4} having nonincreasing even cycles are (1243), (1324), (1342), (1423), and (1432).
		

Crossrefs

Programs

  • Maple
    g := (1/2*(2*(1-cosh(z))-ln(1-z^2)))/(1-z): gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 21);
  • Mathematica
    With[{nn=30},CoefficientList[Series[1/2(2(1-Cosh[x])-Log[1-x^2])/(1-x), {x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Oct 22 2011 *)
    Table[(n! HarmonicNumber[n] - HypergeometricPFQ[{1, -n}, {}, -1] + (-1)^(n + 1) HypergeometricPFQ[{1, -n}, {}, 1] + n! (2 + (-1)^n LerchPhi[-1, 1, 1 + n] - Log[2]))/2, {n, 0, 20}] (* Benedict W. J. Irwin, May 30 2016 *)

Formula

a(n) = Sum_{k>=0} k*A186769(n,k).
E.g.f.: (1/2) * (2*(1-cosh(z)) - log(1-z^2))/(1-z).
a(n) ~ n!/2 * (log(n/2) - 1/exp(1) + 2 - exp(1) + gamma), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 05 2013
a(n) = (n!*H(n)-2F0(1,-n;;-1) + (-1)^(n+1)*2F0(1,-n;;1)+n!*(2+(-1)^n*LerchPhi(-1,1,n+1)-log(2)))/2, where H(n) is the n-th harmonic number. - Benedict W. J. Irwin, May 30 2016