A184998 Smallest number having exactly n partitions into distinct parts greater than 1, with each part divisible by the next.
1, 0, 6, 14, 12, 18, 24, 40, 36, 30, 48, 42, 75, 60, 72, 66, 80, 105, 84, 114, 102, 90, 120, 138, 132, 126, 186, 156, 150, 170, 180, 182, 310, 222, 200, 272, 434, 234, 198, 320, 273, 308, 210, 354, 252, 300, 360, 372, 392, 500, 366, 315
Offset: 0
Examples
a(7) = 40, because A167865(40) = 7 and A167865(m) <> 7 for all m<40. The 7 partitions of 40 into distinct parts greater than 1, with each part divisible by the next are: [40], [38,2], [36,4], [35,5], [32,8], [30,10], [24,12,4].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
with(numtheory): a:= proc() local t, a, b; t:= -1; a:= proc() -1 end; b:= proc(n) option remember; `if`(n=0, 1, add(b((n-d)/d), d=divisors(n) minus{1})) end: proc(n) local h; while a(n) = -1 do t:= t+1; h:= b(t); if a(h) = -1 then a(h):= t fi od; a(n) end end(): seq(a(n), n=0..100);
-
Mathematica
a[n0_] := Module[{t = -1, a, b}, a[] = -1; b[n] := b[n] = If[n == 0, 1, Sum[b[(n - d)/d], {d, Divisors[n] ~Complement~ {1}}]]; While[a[n] == -1, t++; h = b[t]; If[a[h] == -1, a[h] = t]]; a[n0]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 21 2018, translated from Maple *)
Formula
a(n) = min { k : A167865(k) = n }.