A184999 Smallest number having exactly n partitions into distinct parts, with each part divisible by the next.
0, 3, 6, 9, 12, 15, 22, 25, 21, 30, 48, 36, 40, 56, 51, 45, 57, 64, 84, 76, 63, 90, 85, 93, 81, 99, 100, 91, 150, 130, 105, 133, 126, 147, 154, 184, 135, 153, 198, 213, 175, 304, 165, 265, 232, 183, 320, 171, 226, 210, 201, 274, 300, 243
Offset: 1
Examples
a(7) = 22, because A122651(22) = 7 and A122651(m) <> 7 for all m<22. The 7 partitions of 22 into distinct parts, with each part divisible by the next are: [22], [21,1], [20,2], [18,3,1], [16,4,2], [14,7,1], [12,6,3,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:= proc() local t, a, b, bb; t:= -1; a:= proc() -1 end; bb:= proc(n) option remember; `if`(n=0, 1, add(bb((n-d)/d), d=divisors(n) minus{1})) end: b:= n-> `if`(n=0, 1, bb(n)+bb(n-1)); proc(n) local h; while a(n) = -1 do t:= t+1; h:= b(t); if a(h) = -1 then a(h):= t fi od; a(n) end end(): seq(a(n), n=1..100);
-
Mathematica
b[0]=1; b[n_] := b[n] = Sum[b[(n-d)/d], {d, Divisors[n] // Rest}]; a[0] = 1; a[n_] := For[k=0, True, k++, If[b[k]+b[k-1] == n, Return[k]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 03 2014, after Alois P. Heinz *)
Formula
a(n) = min { k : A122651(k) = n }.