A185002 Numbers k such that P(k^2+1) > P((k+1)^2+1) where P(n) (A006530) is the largest prime factor of n.
4, 6, 10, 11, 12, 14, 16, 17, 20, 22, 24, 26, 29, 30, 33, 36, 37, 40, 42, 45, 46, 49, 51, 52, 54, 56, 59, 61, 62, 63, 66, 67, 69, 71, 72, 74, 79, 82, 84, 85, 88, 90, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 108, 110, 113, 116, 118, 120, 121, 122, 124, 126
Offset: 1
Keywords
Examples
11 is in the sequence because 11^2+1 = 2*61 and 12^2+1 = 5*29 => 61 > 29.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
f[n_]:=FactorInteger[n^2+1][[-1,1]];Select[Range[125],f[#]>f[#+1]&]
-
PARI
r=2;for(k=1,1e3,t=factor((k+1)^2+1)[,1];t=t[#t];if(t
Charles R Greathouse IV, Jan 23 2012