A218643 Array, by antidiagonals, A(n,k) = next number that is the product of exactly k primes (not necessarily distinct) after 10*n.
2, 4, 11, 8, 14, 23, 16, 12, 21, 31, 32, 16, 27, 33, 41, 64, 32, 24, 42, 46, 53, 128, 64, 32, 36, 42, 51, 61, 256, 128, 64, 32, 54, 52, 62, 71, 512, 256, 128, 64, 48, 54, 63, 74, 83, 1024, 512, 256, 128, 64, 72, 81, 75, 82, 97, 2048, 1024, 512, 256, 128, 64, 72, 81, 92, 91, 101, 4096, 2048, 1024, 512, 256, 128, 64, 72, 81, 92, 106, 113, 8192, 4096, 2048, 1024, 512, 256, 128, 96, 108, 100, 102, 111, 127
Offset: 1
Examples
Table begins: ======================================================== ...|n=0|n=1|n=2|n=3|n=4|n=5|n=6|n=7|n=7|n=9|n=10| k=1|.2.|.11|.23|.31|.41|.53|.61|.71|.83|.97|.101|A218255 k=2|.4.|.14|.21|.33|.46|.51|.62|.74|.82|.91|.106|A185008 k=3|.8.|.12|.27|.42|.42|.52|.63|.75|.92|.92|.102| k=4|16.|.16|.24|.36|.54|.54|.81|.81|.81|100|.104| k=5|32.|.32|.32|.32|.48|.72|.72|.72|108|108|.108| k=6|64.|.64|.64|.64|.64|.64|.64|.96|.96|.96|.144| ========================================================
Programs
-
Maple
A218643 := proc(n,k) local a; for a from 10*n+1 do if numtheory[bigomega](a) = k then return a; end if; end do: end proc: for d from 1 to 13 do for n from 0 to d-1 do printf("%d,",A218643(n,d-n)) ; end do: end do: # R. J. Mathar, Nov 07 2012
Comments