A185011 Numbers k such that P(k^2+1) < P((k+1)^2+1) where P(n) (A006530) is the largest prime factor of n.
1, 3, 5, 7, 8, 9, 13, 15, 18, 19, 21, 23, 25, 27, 28, 31, 32, 34, 35, 38, 39, 41, 43, 44, 47, 48, 50, 53, 55, 57, 58, 60, 64, 65, 68, 70, 73, 75, 76, 77, 78, 80, 81, 83, 86, 87, 89, 91, 93, 96, 99, 100, 105, 107, 109, 111, 112, 114, 115, 117, 119, 123, 125
Offset: 1
Keywords
Examples
8 is in the sequence because 8^2+1 = 5*13 and 9^2+1 = 2*41 => 13 < 41.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_]:=FactorInteger[n^2+1][[-1,1]];Select[Range[125],f[#]