cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185020 a(n) = A000108(n)*A002605(n+1), where A000108 are the Catalan numbers.

Original entry on oeis.org

1, 2, 12, 80, 616, 5040, 43296, 384384, 3500640, 32517056, 306896512, 2934597120, 28369508608, 276810483200, 2722537128960, 26963147796480, 268659456837120, 2691301381401600, 27089160416102400, 273833161582632960, 2778754123765002240, 28296326851107594240
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2012

Keywords

Comments

More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, S(0)=1, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
Conjecture: +n*(n+1)*a(n) -4*n*(2*n-1)*a(n-1) -8*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 08 2016

Examples

			G.f.: A(x) = 1 + 1*2*x + 2*6*x^2 + 5*16*x^3 + 14*44*x^4 + 42*120*x^5 + 132*328*x^6 +...+ A000108(n)*A002605(n+1)*x^n +...
		

Crossrefs

Cf. A002605.

Programs

  • Mathematica
    MapIndexed[CatalanNumber[#2 - 1] #1 &, Rest@ RecurrenceTable[{a[n] == 2 (a[n - 1] + a[n - 2]), a[0] == 0, a[1] == 1}, a, {n, 22}]] // Flatten (* or *)
    CoefficientList[Series[Sqrt[(1 - 4 x - Sqrt[1 - 8 x - 32 x^2])/24]/x, {x, 0, 21}], x] (* Michael De Vlieger, Oct 08 2016 *)
  • PARI
    {A000108(n) = binomial(2*n,n)/(n+1)}
    {A002605(n) = polcoef(x/(1-2*x-2*x^2 +x*O(x^n)), n)}
    {a(n)=A000108(n)*A002605(n+1)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: sqrt( (1-4*x - sqrt(1-8*x-32*x^2))/24 )/x.
G.f. A(x) satisfies A(x) = sqrt( 1 + 4*x*A(x)^2 + 12*x^2*A(x)^4 ). - Paul D. Hanna, Dec 14 2024