A185020 a(n) = A000108(n)*A002605(n+1), where A000108 are the Catalan numbers.
1, 2, 12, 80, 616, 5040, 43296, 384384, 3500640, 32517056, 306896512, 2934597120, 28369508608, 276810483200, 2722537128960, 26963147796480, 268659456837120, 2691301381401600, 27089160416102400, 273833161582632960, 2778754123765002240, 28296326851107594240
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 1*2*x + 2*6*x^2 + 5*16*x^3 + 14*44*x^4 + 42*120*x^5 + 132*328*x^6 +...+ A000108(n)*A002605(n+1)*x^n +...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..960
Crossrefs
Cf. A002605.
Programs
-
Mathematica
MapIndexed[CatalanNumber[#2 - 1] #1 &, Rest@ RecurrenceTable[{a[n] == 2 (a[n - 1] + a[n - 2]), a[0] == 0, a[1] == 1}, a, {n, 22}]] // Flatten (* or *) CoefficientList[Series[Sqrt[(1 - 4 x - Sqrt[1 - 8 x - 32 x^2])/24]/x, {x, 0, 21}], x] (* Michael De Vlieger, Oct 08 2016 *)
-
PARI
{A000108(n) = binomial(2*n,n)/(n+1)} {A002605(n) = polcoef(x/(1-2*x-2*x^2 +x*O(x^n)), n)} {a(n)=A000108(n)*A002605(n+1)} for(n=0,30,print1(a(n),", "))
Formula
G.f.: sqrt( (1-4*x - sqrt(1-8*x-32*x^2))/24 )/x.
G.f. A(x) satisfies A(x) = sqrt( 1 + 4*x*A(x)^2 + 12*x^2*A(x)^4 ). - Paul D. Hanna, Dec 14 2024
Comments