cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185040 O.g.f.: 1/(1-x) * Sum_{n>=0} 1/(1-(n+1)*x)^n * x^n/n! * exp(-x/(1-(n+1)*x)).

Original entry on oeis.org

1, 1, 2, 5, 15, 54, 220, 973, 4607, 23230, 124088, 698471, 4124961, 25474314, 164063103, 1099233251, 7645091839, 55085061358, 410472347944, 3158307976315, 25057152530411, 204717532709542, 1720324316575275, 14853374782672785, 131632834029683663, 1196258970969508760
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2012

Keywords

Comments

Compare g.f. to the curious identity:
1/(1+x^2) = Sum_{n>=0} (1-(n+1)*x)^n * x^n/n! * exp(-x*(1-(n+1)*x)).

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 54*x^5 + 220*x^6 +...
where the o.g.f. equals the series:
A(x)*(1-x) = exp(-x/(1-x)) + x/(1-2*x)*exp(-x/(1-2*x)) + x^2/(1-3*x)^2/2!*exp(-x/(1-3*x)) + x^3/(1-4*x)^3/3!*exp(-x/(1-4*x)) + x^4/(1-5*x)^4/4!*exp(-x/(1-5*x)) + x^5/(1-6*x)^5/5!*exp(-x/(1-6*x)) + x^6/(1-7*x)^6/6!*exp(-x/(1-7*x)) +...
which simplifies to a power series in x with integer coefficients.
		

Crossrefs

Cf. A218667.

Programs

  • Mathematica
    m = 26; Sum[1/(1 - (n+1)x)^n x^n Exp[-x/(1 - (n+1)x)]/n!, {n, 0, m}]/(1-x) + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Jan 27 2020 *)
  • PARI
    {a(n)=local(A=1+x, X=x+x*O(x^n)); A=1/(1-x)*sum(k=0, n, 1/(1-(k+1)*X)^k*x^k/k!*exp(-X/(1-(k+1)*X))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

Binomial transform of A218667.