cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185050 Least k such that G(k) > 3 - 1/2^n, where G(k) is the sum of the first k terms of the geometric series 1 + 2/3 + (2/3)^2 + ....

Original entry on oeis.org

3, 5, 7, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 37, 39, 41, 43, 44, 46, 48, 49, 51, 53, 54, 56, 58, 60, 61, 63, 65, 66, 68, 70, 72, 73, 75, 77, 78, 80, 82, 84, 85, 87, 89, 90, 92, 94, 96, 97, 99, 101, 102, 104, 106, 107, 109, 111, 113
Offset: 0

Views

Author

Arkadiusz Wesolowski, Dec 25 2012

Keywords

Comments

Many of terms in this sequence are that same as A186219(n+2) but not all.

Examples

			a(1) = 5 because 1 + 2/3 + (2/3)^2 + (2/3)^3 + (2/3)^4 > 3 - 1/2.
		

References

  • Mohammad K. Azarian, Geometric Series, Problem 329, Mathematics and Computer Education, Vol. 30, No. 1, Winter 1996, p. 101. Solution published in Vol. 31, No. 2, Spring 1997, pp. 196-197.

Programs

  • Mathematica
    lst = {}; n = s = 0; Do[s = s + (2/3)^k; If[s > 3 - 1/2^n, AppendTo[lst, k + 1]; n++], {k, 0, 112}]; lst