cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185062 Number of n-element subsets that can be chosen from {1,2,...,2*n^3} having element sum n^4.

Original entry on oeis.org

1, 1, 7, 351, 56217, 18878418, 11163952389, 10292468330630, 13703363417260677, 24932632800863823135, 59509756600504616529186, 180533923700628895521591343, 678854993880375551144618682344, 3100113915888360851262910882014885
Offset: 0

Views

Author

Alois P. Heinz, Jan 22 2012

Keywords

Comments

a(n) is the number of partitions of n^4 into n distinct parts <= 2*n^3.

Examples

			a(0) = 1: {}.
a(1) = 1: {1}.
a(2) = 7: {1,15}, {2,14}, {3,13}, {4,12}, {5,11}, {6,10}, {7,9}.
		

Crossrefs

Column k=3 of A185282.

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(it*(2*i-t+1)/2, 0,
          `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n^4, 2*n^3, n):
    seq(a(n), n=0..5);
  • Mathematica
    $RecursionLimit = 10000;
    b[n_, i_, t_] := b[n, i, t] =
         If[i < t || n < t(t+1)/2 || n > t(2i - t + 1)/2, 0,
         If[n == 0, 1, b[n, i-1, t] + If[n < i, 0, b[n-i, i-1, t-1]]]];
    a[n_] := b[n^4, 2 n^3, n];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 10}] (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)