A185076 a(n) is the least number k such that (sum of digits of k^2) + (number of digits of k^2) = n, or 0 if no such k exists.
0, 1, 0, 10, 2, 100, 11, 1000, 4, 3, 6, 8, 19, 35, 7, 16, 34, 106, 13, 41, 24, 17, 37, 107, 323, 43, 124, 317, 67, 113, 63, 114, 134, 343, 83, 133, 367, 1024, 167, 374, 264, 314, 386, 1043, 313, 583, 1303, 3283, 707, 1183, 3316, 836, 1333, 3286, 10133
Offset: 1
Examples
a(7)=11 since 7 = sumdigits(121) + numberdigits(121) = 4 + 3.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..185
Programs
-
Mathematica
Table[k=1; While[d=IntegerDigits[k^2]; n>Length[d] && n != Total[d] + Length[d], k++]; If[Length[d] >= n, k=0]; k, {n, 50}]
-
Python
from itertools import count def A185076(n): for k in count(1): if n == (t:=len(s:=str(k**2)))+sum(map(int,s)): return k if t >= n: return 0 # Chai Wah Wu, Mar 15 2023
Comments