cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185087 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*A000108(k+1).

Original entry on oeis.org

1, 1, 3, 5, 12, 24, 55, 119, 272, 612, 1411, 3247, 7565, 17667, 41561, 98099, 232696, 553784, 1322813, 3169065, 7614583, 18342921, 44294991, 107200829, 259983346, 631718606, 1537737567, 3749440151, 9156561590, 22394270034, 54845701243
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

Essentially identical to A090345 (=1,0,1,1,3,5,12,24...). - Joerg Arndt, Mar 18 2011
Hankel transform is A008619(n+1) (counting numbers doubled).

Programs

  • Mathematica
    CoefficientList[Series[(1 - x - 2*x^2 - Sqrt[1 - 2 x - 3 x^2 + 4 x^3])/(2*x^4), {x,0,50}], x] (* G. C. Greubel, Jun 22 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x-2*x^2-sqrt(1-2*x-3*x^2+4*x^3))/(2*x^4)) \\ G. C. Greubel, Jun 22 2017

Formula

G.f.: (1-x-2x^2-sqrt(1-2x-3x^2+4x^3))/(2x^4).
G.f.: 1/(1-x-2x^2/(1-(1/2)x^2/(1-x-(3/2)x^2/(1-(2/3)x^2/(1-x-(4/3)x^2/(1-(3/4)x^2/(1-... (continued fraction).
a(n)=sum{k=0..n, sum{j=0..n, binomial(k-j,n-k-j)*binomial(k,j)*if(n-k-j>=0, A001006(n-k-j),0)}}.
a(n)=A090345(n+2).
Conjecture: (n+4)*a(n) -(2*n+5)*a(n-1) -3*(n+1)*a(n-2) +2*(2*n-1)*a(n-3)=0. - R. J. Mathar, Nov 16 2011