A185105 Number T(n,k) of entries in the k-th cycles of all permutations of {1,2,..,n}; each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
1, 3, 1, 12, 5, 1, 60, 27, 8, 1, 360, 168, 59, 12, 1, 2520, 1200, 463, 119, 17, 1, 20160, 9720, 3978, 1177, 221, 23, 1, 181440, 88200, 37566, 12217, 2724, 382, 30, 1, 1814400, 887040, 388728, 135302, 34009, 5780, 622, 38, 1, 19958400, 9797760, 4385592, 1606446, 441383, 86029, 11378, 964, 47, 1
Offset: 1
Examples
The six permutations of n=3 in ordered cycle form are: { {1}, {2}, {3} } { {1}, {2, 3}, {} } { {1, 2}, {3}, {} } { {1, 2, 3}, {}, {}} { {1, 3, 2}, {}, {}} { {1, 3}, {2}, {} } . The lengths of the cycles in position k=1 sum to 12, those of the cycles in position k=2 sum to 5 and those of the cycles in position k=3 sum to 1. Triangle begins: 1; 3, 1; 12, 5, 1; 60, 27, 8, 1; 360, 168, 59, 12, 1; 2520, 1200, 463, 119, 17, 1; 20160, 9720, 3978, 1177, 221, 23, 1; 181440, 88200, 37566, 12217, 2724, 382, 30, 1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; expand(`if`(n=0, 1, add((p-> p+coeff(p, x, 0)*j*x^i)(b(n-j, i+1))* binomial(n-1, j-1)*(j-1)!, j=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1)): seq(T(n), n=1..12); # Alois P. Heinz, Apr 15 2017
-
Mathematica
Table[it = Join[RotateRight /@ ToCycles[#], Table[{}, {k}]] & /@ Permutations[Range[n]]; Tr[Length[Part[#, k]]& /@ it], {n, 7}, {k, n}] (* Second program: *) b[n_, i_] := b[n, i] = Expand[If[n==0, 1, Sum[Function[p, p + Coefficient[ p, x, 0]*j*x^i][b[n-j, i+1]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1]]; Array[T, 12] // Flatten (* Jean-François Alcover, May 30 2018, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Apr 15 2017
Comments