cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185105 Number T(n,k) of entries in the k-th cycles of all permutations of {1,2,..,n}; each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.

Original entry on oeis.org

1, 3, 1, 12, 5, 1, 60, 27, 8, 1, 360, 168, 59, 12, 1, 2520, 1200, 463, 119, 17, 1, 20160, 9720, 3978, 1177, 221, 23, 1, 181440, 88200, 37566, 12217, 2724, 382, 30, 1, 1814400, 887040, 388728, 135302, 34009, 5780, 622, 38, 1, 19958400, 9797760, 4385592, 1606446, 441383, 86029, 11378, 964, 47, 1
Offset: 1

Views

Author

Wouter Meeussen, Dec 26 2012

Keywords

Comments

Row sums are n!*n = A001563(n) (see example).
For fixed k>=1, A185105(n,k) ~ n!*n/2^k. - Vaclav Kotesovec, Apr 25 2017

Examples

			The six permutations of n=3 in ordered cycle form are:
{ {1}, {2}, {3}    }
{ {1}, {2, 3}, {}  }
{ {1, 2}, {3}, {}  }
{ {1, 2, 3}, {}, {}}
{ {1, 3, 2}, {}, {}}
{ {1, 3}, {2}, {}  }
.
The lengths of the cycles in position k=1 sum to 12, those of the cycles in position k=2 sum to 5 and those of the cycles in position k=3 sum to 1.
Triangle begins:
       1;
       3,     1;
      12,     5,     1;
      60,    27,     8,     1;
     360,   168,    59,    12,    1;
    2520,  1200,   463,   119,   17,   1;
   20160,  9720,  3978,  1177,  221,  23,  1;
  181440, 88200, 37566, 12217, 2724, 382, 30, 1;
  ...
		

Crossrefs

Columns k=1-10 give: A001710(n+1), A138772, A159324(n-1)/2 or A285231, A285232, A285233, A285234, A285235, A285236, A285237, A285238.
T(2n,n) gives A285239.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          add((p-> p+coeff(p, x, 0)*j*x^i)(b(n-j, i+1))*
           binomial(n-1, j-1)*(j-1)!, j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Apr 15 2017
  • Mathematica
    Table[it = Join[RotateRight /@ ToCycles[#], Table[{}, {k}]] & /@ Permutations[Range[n]]; Tr[Length[Part[#, k]]& /@ it], {n, 7}, {k, n}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = Expand[If[n==0, 1, Sum[Function[p, p + Coefficient[ p, x, 0]*j*x^i][b[n-j, i+1]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1]];
    Array[T, 12] // Flatten (* Jean-François Alcover, May 30 2018, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Apr 15 2017