A185122 a(n) = minimum pandigital prime in base n.
2, 11, 283, 3319, 48761, 863231, 17119607, 393474749, 10123457689, 290522736467, 8989787252711, 304978405943587, 11177758345241723, 442074237951168419, 18528729602926047181, 830471669159330267737, 39482554816041508293677, 1990006276023222816118943, 105148064265927977839670339, 5857193485931947477684595711
Offset: 2
Examples
The corresponding base-b representations are: 2 10 3 102 4 10123 5 101234 6 1013425 7 10223465 8 101234567 9 1012346785 10 10123457689 11 1022345689a7 12 101234568a79b 13 10123456789abc 14 10123456789cdab 15 10223456789adbce ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..386 (terms 2..100 from Per H. Lundow)
- Chai Wah Wu, Pandigital and penholodigital numbers, arXiv:2403.20304 [math.GM], 2024. See p. 3.
Programs
-
Python
from math import gcd from itertools import count from sympy import nextprime from sympy.ntheory import digits def A185122(n): m = n j = 0 if n > 3: for j in range(1,n): if gcd((n*(n-1)>>1)+j,n-1) == 1: break if j == 0: for i in range(2,n): m = n*m+i elif j == 1: for i in range(1,n): m = n*m+i else: for i in range(2,1+j): m = n*m+i for i in range(j,n): m = n*m+i m -= 1 while True: if len(set(digits(m:=nextprime(m),n)[1:]))==n: return m # Chai Wah Wu, Mar 12 2024
Comments