A185125 Expansion of f(-x, x^5) in powers of x where f(,) is the Ramanujan general theta function.
1, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 - x + x^5 - x^8 - x^16 + x^21 - x^33 + x^40 + x^56 - x^65 + x^85 + ... G.f. = q - q^4 + q^16 - q^25 - q^49 + q^64 - q^100 + q^121 + q^169 - q^196 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x^6] QPochhammer[ -x^5, -x^6] QPochhammer[ -x^6], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
-
PARI
{a(n) = my(m); if( issquare( 3*n + 1, &m), (m%3!=0) * (-1)^((m+3) \ 6 + n), 0)};
Formula
Euler transform of period 24 sequence [ -1, 0, 0, 0, 1, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 1, 0, 0, 0, -1, -1, ...].
G.f.: Sum_{k in Z} (-1)^floor(k/2) * x^(k * (3*k + 2)).
a(4*n + 2) = a(4*n + 3) = a(5*n + 2) = a(5*n + 4) = a(8*n + 4) = 0. a(4*n + 1) = - A080902(n). a(8*n) = A010815(n).
a(n) = (-1)^n * A185124(n). - Michael Somos, Jun 30 2015
Comments