A185148 Number of rectangular arrangements of [1,3n] in 3 increasing sequences of size n and n monotonic sequences of size 3.
1, 6, 53, 587, 7572, 109027, 1705249, 28440320, 499208817, 9134237407, 172976239886, 3371587949969, 67351686970929, 1374179898145980, 28557595591148315, 603118526483125869, 12920388129877471030, 280324904918707937001, 6151595155000424589327, 136384555249451824930126
Offset: 1
Keywords
Examples
For n = 2 the a(2) = 6 arrangements are: +---+ +---+ +---+ +---+ +---+ +---+ |1 4| |1 6| |1 3| |1 3| |1 2| |1 2| |2 5| |2 5| |2 5| |2 4| |3 5| |3 4| |3 6| |3 4| |4 6| |5 6| |4 6| |5 6| +---+ +---+ +---+ +---+ +---+ +---+ Only the second of these arrangements is not counted by A005789(2).
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 1..700 (terms 0..200 from Alois P. Heinz)
Crossrefs
Column k=3 of A208615. - Alois P. Heinz, Feb 29 2012
Programs
-
Maple
b:= proc(x, y, z) option remember; `if`(x=z, `if`(x=0, 1, 2*b(x-1, y, z)), `if`(x>0, b(x-1, y, z), 0)+ `if`(y>x, b(x, y-1, z), 0)+ `if`(z>y, b(x, y, z-1), 0)) end: a:= n-> b(n-1, n$2): seq(a(n), n=1..30); # Alois P. Heinz, Feb 29 2012
-
Mathematica
b[x_, y_, z_] := b[x, y, z] = If[x == z, If[x == 0, 1, 2*b[x - 1, y, z]], If[x > 0, b[x - 1, y, z], 0] + If[y > x, b[x, y - 1, z], 0] + If[z > y, b[x, y, z - 1], 0]]; a[n_] := b[n - 1, n, n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 12 2017, after Alois P. Heinz *)
Formula
a(n) ~ c * 27^n / n^4, where c = 0.608287207375... . - Vaclav Kotesovec, Sep 03 2014, updated Sep 07 2016
Extensions
More terms and example from Alois P. Heinz, Feb 22 2011
Extended beyond a(8) by Alois P. Heinz, Feb 22 2012
Comments