cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185148 Number of rectangular arrangements of [1,3n] in 3 increasing sequences of size n and n monotonic sequences of size 3.

Original entry on oeis.org

1, 6, 53, 587, 7572, 109027, 1705249, 28440320, 499208817, 9134237407, 172976239886, 3371587949969, 67351686970929, 1374179898145980, 28557595591148315, 603118526483125869, 12920388129877471030, 280324904918707937001, 6151595155000424589327, 136384555249451824930126
Offset: 1

Views

Author

Olivier Gérard, Feb 15 2011

Keywords

Comments

a(n) counts a subset of A025035(n).
a(n) counts a more general set than A005789(n).
a(n) is also the number of (3*n-1)-step walks on 3-dimensional cubic lattice from (1,0,0) to (n,n,n) with steps in {(1,0,0), (0,1,0), (0,0,1)} such that for each point (x,y,z) we have x<=y<=z or x>=y>=z. - Alois P. Heinz, Feb 29 2012

Examples

			For n = 2 the a(2) = 6 arrangements are:
+---+  +---+  +---+  +---+  +---+  +---+
|1 4|  |1 6|  |1 3|  |1 3|  |1 2|  |1 2|
|2 5|  |2 5|  |2 5|  |2 4|  |3 5|  |3 4|
|3 6|  |3 4|  |4 6|  |5 6|  |4 6|  |5 6|
+---+  +---+  +---+  +---+  +---+  +---+
Only the second of these arrangements is not counted by A005789(2).
		

Crossrefs

Column k=3 of A208615. - Alois P. Heinz, Feb 29 2012

Programs

  • Maple
    b:= proc(x, y, z) option remember;
          `if`(x=z, `if`(x=0, 1, 2*b(x-1, y, z)), `if`(x>0, b(x-1, y, z), 0)+
          `if`(y>x, b(x, y-1, z), 0)+ `if`(z>y, b(x, y, z-1), 0))
        end:
    a:= n-> b(n-1, n$2):
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 29 2012
  • Mathematica
    b[x_, y_, z_] := b[x, y, z] = If[x == z, If[x == 0, 1, 2*b[x - 1, y, z]], If[x > 0, b[x - 1, y, z], 0] + If[y > x, b[x, y - 1, z], 0] + If[z > y, b[x, y, z - 1], 0]];
    a[n_] := b[n - 1, n, n];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 12 2017, after Alois P. Heinz *)

Formula

a(n) ~ c * 27^n / n^4, where c = 0.608287207375... . - Vaclav Kotesovec, Sep 03 2014, updated Sep 07 2016

Extensions

More terms and example from Alois P. Heinz, Feb 22 2011
Extended beyond a(8) by Alois P. Heinz, Feb 22 2012