cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185201 10^n - second largest prime less than 10^n.

Original entry on oeis.org

5, 11, 9, 33, 11, 21, 27, 29, 71, 57, 53, 39, 137, 29, 53, 83, 23, 33, 57, 27, 113, 71, 53, 303, 321, 249, 107, 261, 53, 17, 81, 119, 47, 513, 237, 179, 123, 123, 173, 27, 203, 137, 119, 77, 119, 147, 83, 47, 183, 161, 333, 339, 611, 579
Offset: 1

Views

Author

Washington Bomfim, Jan 24 2012

Keywords

Examples

			a(1) = 5 because precprime(10) = 7, and precprime(6) = 5.
From _M. F. Hasler_, Jul 19 2024: (Start)
Further examples: (where pp = prevprime = A151799)
    n |   pp(pp(10^n))  | a(n)
  ----+-----------------+------
    1 |               5 |   5
    2 |              89 |  11
    3 |             991 |   9
    4 |            9967 |  33
    5 |           99989 |  11
    6 |          999979 |  21
    7 |         9999973 |  27
    8 |        99999971 |  29
    9 |       999999929 |  71
   10 |      9999999943 |  57
   11 |     99999999947 |  53
   12 |    999999999961 |  39
   13 |   9999999999863 | 137
   14 |  99999999999971 |  29
   15 | 999999999999947 |  53
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Second Edition, Vol. 2, Seminumerical Algorithms, Chapter 4.5.4 Factoring into Primes, Table 1, Page 390, Addison-Wesley, Reading, MA, 1981.

Crossrefs

Cf. A033874.
Cf. A003618 (largest prime < 10^n), A151799 (prevprime function).

Programs

  • Maple
    seq(10^n - prevprime(prevprime(10^n)),n=1..100); # Robert Israel, May 28 2017
  • Mathematica
    Table[10^n - NextPrime[10^n, -2], {n,1,50}] (* G. C. Greubel, Jun 24 2017 *)
  • PARI
    apply( {A185201(n)=10^n-precprime(precprime(10^n)-1)}, [1..66]) \\ M. F. Hasler, Jul 19 2024

Formula

a(n) = 10^n - precprime(precprime(10^n)-1)