A185210 Areas A of the triangles such that A, the sides, the inradius and the radius of the three excircles are integers.
6, 24, 30, 42, 48, 54, 60, 84, 96, 108, 120, 144, 150, 156, 168, 180, 192, 210, 216, 240, 270, 294, 330, 336, 378, 384, 390, 420, 432, 462, 480, 486, 504, 510, 528, 540, 546, 576, 594, 600, 624, 630, 672, 714, 720, 726, 750, 756, 768, 810, 840, 864, 924, 930
Offset: 1
Keywords
Examples
24 is in the sequence because for (a, b, c) = (6, 8, 10) => s =(6+8+10)/2 = 12; A = sqrt(12(12-6)(12-8)(12-10)) = sqrt(576) = 24; r = A/s = 2; r1 = 2*24(-6+8+10) = 4; r2 = 2*24(6-8+10) = 6; r3 = 2*24(6+8-10) = 12.
References
- Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.
- Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..54
- Eric W. Weisstein's World of Mathematics, Excircles
- Eric W. Weisstein's World of Mathematics, Exradius
- Eric W. Weisstein's World of Mathematics, Inradius
Programs
-
Mathematica
nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[area2]/s] && IntegerQ[2*Sqrt[area2]/(-a+b+c)] && IntegerQ[2*Sqrt[area2]/(a-b+c)] && IntegerQ[2*Sqrt[area2]/(a+b-c)], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Formula
A = sqrt(s*(p-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula);
the inradius is r=A/s;
the exradii of the excircles are r1 = 2*A/(-a+b+c), x2 = 2*A*b/(a-b+c), and x3 = 2*A*c/(a+b-c).
Comments