cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185220 Expansion of phi(x^3) * psi(x)^2 / chi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 4, 5, 5, 5, 7, 7, 9, 7, 6, 11, 8, 10, 8, 9, 14, 10, 15, 7, 7, 14, 14, 16, 8, 13, 13, 12, 18, 14, 13, 15, 15, 16, 9, 11, 22, 16, 19, 16, 11, 17, 16, 23, 19, 9, 22, 18, 16, 15, 18, 27, 12, 23, 11, 15, 24, 24, 27, 9, 23, 23, 20, 21, 19, 15, 22, 24, 22, 17
Offset: 0

Views

Author

Michael Somos, Aug 29 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 3*x + 4*x^2 + 5*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 7*x^9 + ...
q^7 + 3*q^31 + 4*q^55 + 5*q^79 + 5*q^103 + 5*q^127 + 7*q^151 + 7*q^175 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 - x^k)^2 * (1 + x^k)^5 * (1 - x^(3*k)) / (1 + x^(3*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^2 / (eta(x + A)^3 * eta(x^6 + A)), n))}

Formula

Expansion of q^(-7/24) * eta(q^2)^5 * eta(q^3)^2 / (eta(q)^3 * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 3, -2, 1, -2, 3, -3, ...].
G.f.: Product_{k>0} (1 - x^k)^2 * (1 + x^k)^5 * (1 - x^(3*k)) / (1 + x^(3*k)).
a(n) = A224825(3*n) = A227595(3*n).