A185220 Expansion of phi(x^3) * psi(x)^2 / chi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
1, 3, 4, 5, 5, 5, 7, 7, 9, 7, 6, 11, 8, 10, 8, 9, 14, 10, 15, 7, 7, 14, 14, 16, 8, 13, 13, 12, 18, 14, 13, 15, 15, 16, 9, 11, 22, 16, 19, 16, 11, 17, 16, 23, 19, 9, 22, 18, 16, 15, 18, 27, 12, 23, 11, 15, 24, 24, 27, 9, 23, 23, 20, 21, 19, 15, 22, 24, 22, 17
Offset: 0
Keywords
Examples
1 + 3*x + 4*x^2 + 5*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 7*x^9 + ... q^7 + 3*q^31 + 4*q^55 + 5*q^79 + 5*q^103 + 5*q^127 + 7*q^151 + 7*q^175 + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Product[(1 - x^k)^2 * (1 + x^k)^5 * (1 - x^(3*k)) / (1 + x^(3*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^2 / (eta(x + A)^3 * eta(x^6 + A)), n))}
Comments