cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185259 Irregular triangle read by rows: coefficients in order of decreasing exponents of polynomials P_g(x) related to Hultman numbers.

Original entry on oeis.org

1, 1, 12, 8, 1, 72, 528, 704, 180, 1, 324, 8760, 53792, 98124, 56160, 8064, 1, 1344, 103040, 1759520, 9936360, 21676144, 19083456, 6356160, 604800, 1, 5436, 1054056, 41312704, 539233128, 2901894144, 7118351104, 8247838464, 4418632656, 988952832, 68428800, 1, 21816, 10106736, 823376896, 21574613676, 235937470944, 1230387808384, 3281254260864, 4608240745104, 3390175943424, 1247151098880, 204083712000, 10897286400
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2012

Keywords

Comments

Row n contains 2*n-1 terms.
Evaluating the polynomials at 1 gives A035319.

Examples

			Triangle begins:
[1] 1
[2] 1   12      8
[3] 1   72    528     704     180
[4] 1  324   8760   53792   98124    56160     8064
[5] 1 1344 103040 1759520 9936360 21676144 19083456 6356160 604800
[6] ...
		

Crossrefs

Programs

  • Mathematica
    P[n_, x_] := (f = (1-x)^(4n+1); s = Sum[-StirlingS1[2n+2+k, k+1]/ Binomial[2n+2+k, 2] x^k, {k, 0, 2n-2}]; f s + O[x]^(2n-1) // Normal);
    row[n_] := CoefficientList[P[n, x], x] // Reverse;
    Array[row, 7] // Flatten (* Jean-François Alcover, Sep 05 2018, after Gheorghe Coserea *)
  • PARI
    P(n, v='x) = {
      my(x='x+O('x^(2*n-1)), f=(1-x)^(4*n+1),
         s=sum(k=0, 2*n-2, -stirling(2*n+2+k, k+1, 1)/binomial(2*n+2+k,2)*x^k));
      subst(Pol(f*s, 'x), 'x, v);
    };
    concat(vector(7, n, Vec(P(n))))
    \\ test: N=50; vector(N, n, P(n,1)) == vector(N, n, (4*n)!/((2*n+1)!*4^n))
    \\ Gheorghe Coserea, Jan 30 2018

Extensions

More terms from Gheorghe Coserea, Jan 30 2018