cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185265 a(0)=1, a(1)=2; thereafter a(n) = f(n-1) + f(n-2) where f() = A164387().

Original entry on oeis.org

1, 2, 3, 6, 12, 22, 39, 70, 127, 231, 419, 759, 1375, 2492, 4517, 8187, 14838, 26892, 48739, 88335, 160099, 290164, 525894, 953132, 1727460, 3130855, 5674373, 10284254, 18639219, 33781788, 61226235, 110966650, 201116358, 364504015, 660628396, 1197325296, 2170036700, 3932982369, 7128151480
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2011

Keywords

Comments

Arises in studying lunar arithmetic.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x + 1)*(x^4 + x^3 + 1)/(x^5 + x^4 + x^2 + x - 1), {x, 0, 50}], x] (* G. C. Greubel, Jun 25 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(x+1)*(x^4+x^3+1)/(x^5+x^4+x^2+x-1)) \\ G. C. Greubel, Jun 25 2017

Formula

Satisfies the same recurrence as A164387 and A079976, although with different initial conditions.
From Colin Barker, Jul 25 2013: (Start)
a(n) = a(n-1) + a(n-2) + a(n-4) + a(n-5) for n>5.
G.f.: -(x+1)*(x^4+x^3+1) / (x^5+x^4+x^2+x-1). (End)