A185296 Triangle of connection constants between the falling factorials (x)(n) and (2*x)(n).
1, 0, 2, 0, 2, 4, 0, 0, 12, 8, 0, 0, 12, 48, 16, 0, 0, 0, 120, 160, 32, 0, 0, 0, 120, 720, 480, 64, 0, 0, 0, 0, 1680, 3360, 1344, 128, 0, 0, 0, 0, 1680, 13440, 13440, 3584, 256, 0, 0, 0, 0, 0, 30240, 80640, 48384, 9216, 512
Offset: 0
Examples
Triangle begins n\k|...0.....1.....2.....3.....4.....5.....6 ============================================ 0..|...1 1..|...0.....2 2..|...0.....2.....4 3..|...0.....0....12.....8 4..|...0.....0....12....48....16 5..|...0.....0.....0...120...160....32 6..|...0.....0.....0...120...720...480....64 .. Row 3: (2*x)_3 = (2*x)*(2*x-1)*(2*x-2) = 8*x*(x-1)*(x-2) + 12*x*(x-1). Row 4: (2*x)_4 = (2*x)*(2*x-1)*(2*x-2)*(2*x-3) = 16*x*(x-1)*(x-2)*(x-3) + 48*x*(x-1)*(x-2)+ 12*x*(x-1). Examples of recurrence relation T(4,4) = 5*T(3,4) + 2*T(3,3) = 5*0 + 2*8 = 16; T(5,4) = 4*T(4,4) + 2*T(4,3) = 4*16 + 2*48 = 160; T(6,4) = 3*T(5,4) + 2*T(5,3) = 3*160 + 2*120 = 720; T(7,4) = 2*T(6,4) + 2*T(6,3) = 2*720 + 2*120 = 1680.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, page 158, exercise 7.
Programs
-
Maple
T := (n,k) -> (n!/k!)*binomial(k,n-k)*2^(2*k-n): seq(seq(T(n, k), k=0..n), n=0..9);
-
Sage
# uses[bell_matrix from A264428] bell_matrix(lambda n: 2 if n<2 else 0, 12) # Peter Luschny, Jan 19 2016
Formula
Defining relation: 2*x*(2*x-1)*...*(2*x-n+1) = sum {k=0..n} T(n, k)*x*(x-1)*...*(x-k+1)
Explicit formula: T(n,k) = (n!/k!)*binomial(k,n-k)*2^(2*k-n). [As defined by Comtet (see reference).]
Recurrence relation: T(n,k) = (2*k-n+1)*T(n-1,k)+2*T(n-1,k-1).
E.g.f.: exp(x*(t^2+2*t)) = 1 + (2*x)*t + (2*x+4*x^2)*t^2/2! + (12*x^2+8*x^3)*t^3/3! + ...
O.g.f. for m-th diagonal (starting at main diagonal m = 0): (2*m)!/m!*x^m/(1-2*x)^(2*m+1).
The triangle is the matrix product [2^k*s(n,k)]n,k>=0 * ([s(n,k)]n,k>=0)^(-1),
where s(n,k) denotes the signed Stirling number of the first kind.
Row sums are [1,2,6,20,76,...] = A000898.
Column sums are [1,4,28,296,...] = [2^n*A001515(n)] n>=0.
Comments