cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185302 a(n) = Sum_{d|n} d*sigma(n/d)^d.

Original entry on oeis.org

1, 5, 7, 29, 11, 131, 15, 445, 214, 1315, 23, 6755, 27, 15475, 5807, 62589, 35, 207302, 39, 680419, 116277, 1948963, 47, 7702195, 38936, 20726659, 2365954, 72743987, 59, 227262211, 63, 735070461, 46142609, 2195383507, 2123475, 7556177030, 75, 22082968771
Offset: 1

Views

Author

Paul D. Hanna, Jan 25 2012

Keywords

Comments

Logarithmic derivative of A185301.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 7*x^3/3 + 29*x^4/4 + 11*x^5/5 + 131*x^6/6 + ... where exp(L(x)) = 1 + x + 3*x^2 + 5*x^3 + 14*x^4 + 20*x^5 + 59*x^6 + 83*x^7 + 229*x^8 + 350*x^9 + 878*x^10 + ... + A185301(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # * DivisorSigma[1, n/#]^# &]; Array[a, 40] (* Amiram Eldar, Aug 18 2023 *)
  • PARI
    {a(n)=sumdiv(n,d,d*sigma(n/d)^d)}

Formula

L.g.f.: Sum_{n>=1} Sum_{k>=1} sigma(n)^k * x^(n*k)/n = Sum_{n>=1} a(n)*x^n/n.