A185355 Number of n X n symmetric (0,1)-matrices containing four ones.
0, 1, 12, 52, 150, 345, 686, 1232, 2052, 3225, 4840, 6996, 9802, 13377, 17850, 23360, 30056, 38097, 47652, 58900, 72030, 87241, 104742, 124752, 147500, 173225, 202176, 234612, 270802, 311025, 355570, 404736, 458832, 518177, 583100, 653940, 731046, 814777
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
Programs
-
Maple
a:= n-> (7+(5*n-12)*n)*n^2/12: seq (a(n), n=1..40);
-
Mathematica
Table[n^2*(n - 1)*(5*n - 7)/12, {n, 1, 50}] (* G. C. Greubel, Jun 28 2017 *)
-
PARI
for(n=1,25, print1(n^2*(n-1)*(5*n-7)/12, ", ")) \\ G. C. Greubel, Jun 28 2017
Formula
a(n) = Sum_{k=0..2} C(C(n,2),k)*C(n,4-2*k).
a(n) = n^2*(n-1)*(5*n-7)/12.
G.f.: x^2*(1+7*x+2*x^2)/(1-x)^5.
Comments