cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185377 Product of exactly two distinct primes congruent to 1 mod 8 (A007519).

Original entry on oeis.org

697, 1241, 1513, 1649, 1921, 2329, 2993, 3281, 3649, 3961, 3977, 4097, 4369, 4633, 4777, 5321, 5617, 5729, 6001, 6497, 6817, 6953, 7081, 7361, 7633, 7769, 7913, 8249, 8633, 8857, 9553, 9673, 9809, 9881, 10001, 10057, 10081, 10217, 10489, 10537
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2011

Keywords

Comments

Subset of semiprimes A001358. Subset of {d = p_1 * p_2 * ... * p_m where p_i == 1 (mod 8), 1 <= i <= m are distinct primes} as occurs in Wei, p. 2.

Examples

			10001 is in this sequence because 10001 = 73 * 137 = A007519(3) * A007519(7).
		

Crossrefs

Programs

  • Mathematica
    p = Select[Prime[Range[200]], Mod[#, 8] == 1 &]; Sort[Reap[Do[n=p[[i]] p[[j]]; If[n <= p[[1]]p[[-1]], Sow[n]], {i, 2, Length[p]}, {j, i - 1}]][[2,1]]]
  • PARI
    list(lim)=my(v=List(),P=List(),t); forprime(p=2,lim\17, if(p%8==1, listput(P,p))); for(i=2,#P, my(p=P[i]); for(j=1,i-1, t=p*P[j]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jul 03 2016

Formula

{A007519(i) * A007519(j) for i < j}.
{A000040(i) * A000040(j) for i < j, and A000040(i) in A017077 and A000040(j) in A017077}.