A185379 Product of exactly three distinct primes congruent to 1 mod 8 (A007519).
50881, 62033, 67609, 78761, 95489, 110449, 120377, 134521, 140233, 146761, 162401, 167977, 170017, 170969, 179129, 186337, 195857, 207281, 218161, 225913, 234889, 239513, 246041, 263177, 266377, 279497, 285073, 289153, 290321, 292009, 299081, 301801, 312953
Offset: 1
Examples
a(12) = 170017 = 17 * 73 * 137 = A007519(1) * A007519(3) * A007519(7).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Dasheng Wei, On the equation x^2-Dy^2=n, Feb 18, 2011.
Programs
-
Mathematica
p = Select[Prime[Range[100]], Mod[#, 8] == 1 &]; Sort[Reap[Do[n = p[[i]] p[[j]] p[[k]]; If[n <= p[[1]] p[[2]] p[[-1]], Sow[n]], {i, 2, Length[p]}, {j, i - 1}, {k, j - 1}]][[2, 1]]]
-
PARI
list(lim)=my(v=List(),u=v,t); forprime(p=2,lim\697, if(p%8==1, listput(u,p))); for(i=1,#u-2, for(j=i+1, #u-1, if(u[i]*u[j]*u[j+1]>lim, break); for(k=j+1,#u, t=u[i]*u[j]*u[k]; if(t>lim, break); listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017
Comments