cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185379 Product of exactly three distinct primes congruent to 1 mod 8 (A007519).

Original entry on oeis.org

50881, 62033, 67609, 78761, 95489, 110449, 120377, 134521, 140233, 146761, 162401, 167977, 170017, 170969, 179129, 186337, 195857, 207281, 218161, 225913, 234889, 239513, 246041, 263177, 266377, 279497, 285073, 289153, 290321, 292009, 299081, 301801, 312953
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2011

Keywords

Comments

Subset of numbers that are divisible by exactly 3 primes (counted with multiplicity), also known as triprimes or 3-almost primes, A014612. Subset of {d = p_1 * p_2 * ... * p_m where p_i == 1 (mod 8), 1 <= i <= m are distinct primes} as occurs in Wei, p.2.

Examples

			a(12) = 170017 = 17 * 73 * 137 = A007519(1) * A007519(3) * A007519(7).
		

Crossrefs

Programs

  • Mathematica
    p = Select[Prime[Range[100]], Mod[#, 8] == 1 &]; Sort[Reap[Do[n = p[[i]] p[[j]] p[[k]]; If[n <= p[[1]] p[[2]] p[[-1]], Sow[n]], {i, 2, Length[p]}, {j, i - 1}, {k, j - 1}]][[2, 1]]]
  • PARI
    list(lim)=my(v=List(),u=v,t); forprime(p=2,lim\697, if(p%8==1, listput(u,p))); for(i=1,#u-2, for(j=i+1, #u-1, if(u[i]*u[j]*u[j+1]>lim, break); for(k=j+1,#u, t=u[i]*u[j]*u[k]; if(t>lim, break); listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Formula

{A007519(i) * A007519(j) * A007519(k) for i < j < k}. {A000040(i) * A000040(j) * A000040(k) for i < j < k, and A000040(i) in A017077 and A000040(j) in A017077 and A000040(k) in A017077}.