cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185412 Triangle T(n,m) read by rows: the matrix product A130595 * A156919.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 33, 33, 1, 1, 112, 378, 112, 1, 1, 353, 2938, 2938, 353, 1, 1, 1080, 18987, 44912, 18987, 1080, 1, 1, 3265, 111051, 520523, 520523, 111051, 3265, 1, 1, 9824, 612820, 5131040, 9998182, 5131040, 612820, 9824, 1
Offset: 0

Views

Author

Paul Barry, Jan 26 2011

Keywords

Comments

Row sums are A165968(n+1).
Because A130595 is the inverse of the Pascal triangle A007318, we have A007318 *(this lower triangular matrix) = A156919.

Examples

			Triangle begins in row n=0 with columns 0 <= m <= n:
  1;
  1,    1;
  1,    8,      1;
  1,   33,     33,       1;
  1,  112,    378,     112,       1;
  1,  353,   2938,    2938,     353,       1;
  1, 1080,  18987,   44912,   18987,    1080,      1;
  1, 3265, 111051,  520523,  520523,  111051,   3265,    1;
  1, 9824, 612820, 5131040, 9998182, 5131040, 612820, 9824, 1;
		

Programs

  • Maple
    A156919 := proc(n,m) if n=m then 1; elif m=0 then 2^n ; elif m<0 or m>n then 0; else 2*(m+1)*procname(n-1,m)+(2*n-2*m+1)*procname(n-1,m-1) ; end if; end proc:
    A130595 := proc(n,m) (-1)^(n+m)*binomial(n,m) ; end proc:
    A185412 := proc(n,m) local a,j; a := 0 ; for j from m to n do a := a+A130595(n,j)*A156919(j,m) ; end do: a ; end proc: # R. J. Mathar, Feb 03 2011

Formula

G.f.: 1/(1+x-xy-2x/(1-3xy/(1+x-4x/(1-5xy/(1+x-6x/(1-7xy/(1+x-8x/(1-9xy/(1+ ... (continued fraction).