cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185423 Ordered forests of k increasing plane unary-binary trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 6, 9, 30, 36, 24, 39, 150, 270, 240, 120, 189, 918, 1980, 2520, 1800, 720, 1107, 6174, 16254, 25200, 25200, 15120, 5040, 7281, 47070, 142884, 266616, 327600, 272160, 141120, 40320, 54351, 394470, 1369710, 2948400, 4331880
Offset: 1

Views

Author

Peter Bala, Jan 28 2011

Keywords

Comments

An increasing tree is a labeled rooted tree with the property that the sequence of labels along any path starting from the root is increasing. A080635 enumerates increasing plane (ordered) unary-binary trees with n nodes with labels drawn from the set {1,2,...,n}. The entry T(n,k) of the present table counts ordered forests of k increasing plane unary-binary trees with n nodes. See below for an example. See A185421 for the corresponding table in the non-plane case. See A185422 for the table for unordered forests of increasing plane unary-binary trees.

Examples

			Triangle begins
n\k|....1......2......3......4......5......6......7
===================================================
..1|....1
..2|....1......2
..3|....3......6......6
..4|....9.....30.....36.....24
..5|...39....150....270....240....120
..6|..189....918...1980...2520...1800....720
..7|.1107...6174..16254..25200..25200..15120...5040
..
Examples of recurrence relation:
T(5,3) = 270 = 3*(T(4,2) + T(4,3) + T(4,4)) = 3*(30+36+24);
T(6,1) = 1*(T(5,0) + T(5,1) + T(5,2)) = 39+150.
Examples of ordered forests:
T(4,2) = 30. The 15 unordered forests consisting of two plane increasing unary-binary trees on 4 nodes are shown below. We can order the trees in a forest in two ways giving rise to 30 ordered forests.
......... ......... ...3.....
.2...3... .3...2... ...|.....
..\./.... ..\./.... ...2.....
...1...4. ...1...4. ...|.....
......... ......... ...1...4.
.
......... ......... ...4.....
.2...4... .4...2... ...|.....
..\./.... ..\./.... ...2.....
...1...3. ...1...3. ...|.....
......... ......... ...1...3.
.
......... ......... ...4.....
.3...4... .4...3... ...|.....
..\./.... ..\./.... ...3.....
...1...2. ...1...2. ...|.....
......... ......... ...1...2.
.
......... ......... ...4.....
.3...4... .4...3... ...|.....
..\./.... ..\./.... ...3.....
...2...1. ...2...1. ...|.....
......... ......... ...2...1.
.
......... ......... ..........
..2..4... ..3..4... ..4...3...
..|..|... ..|..|... ..|...|...
..1..3... ..1..2... ..1...2...
......... ......... ..........
		

Crossrefs

Programs

  • Maple
    #A185423
    P := proc(n,x)
    description 'polynomial sequence P(n,x) A185415'
    if n = 0 return 1
    else
    return x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1))
    end proc:
    with combinat:
    T:=(n,k) -> add ((-1)^(k-j)*binomial(k,j)*P(n,j),j = 0..k):
    for n from 1 to 10 do
    seq(T(n,k),k = 1..n);
    end do;
  • PARI
    {T(n,k)=if(n<1||k<1||k>n,0,if(n==1,if(k==1,1,0),k*(T(n-1,k-1)+T(n-1,k)+T(n-1,k+1))))}

Formula

TABLE ENTRIES
(1)... T(n,k) = Sum_{j = 0..k} (-1)^j*binomial(k,j)*P(n,j),
where P(n,x) are the polynomials described in A185415.
Compare (1) with the formula for the number of ordered set partitions
(2)... A019538(n,k) = Sum_{j = 0..k} (-1)^j*binomial(k,j)*j^n.
RECURRENCE RELATION
(3)... T(n+1,k) = k*(T(n,k-1) + T(n,k) + T(n,k+1))
GENERATING FUNCTION
Let E(t) = 1/2 + (sqrt(3)/2)*tan(sqrt(3)/2*t + Pi/6) be the e.g.f. for A080635.
The e.g.f. for the present triangle is
(4)... 1/(1 + x*(1 - E(t))) = Sum {n >= 0} R(n,x)*t^n/n!
= 1 + x*t + (x + 2*x^2)*t^2/2! + (3*x + 6*x^2 + 6*x^3)*t^3/3! + ....
ROW POLYNOMIALS
The ordered Bell polynomials OB(n,x) are the row polynomials of A019538 given by
(5)... OB(n,x) = Sum_{k = 1..n} k!*Stirling2(n,k)*x^k.
By comparing the e.g.f.s for A019538 and the present table we obtain the surprising identity
(6)... (-i*sqrt(3))^(n-1)*OB(n,x)/x = R(n,y)/y,
where i = sqrt(-1) and x = (sqrt(3)*i/3)*y + (-1/2+sqrt(3)*i/6).
RELATIONS WITH OTHER SEQUENCES
Column 1: A080635.
A185422(n,k) = T(n,k)/k!.
Setting y = 0 in (6) gives
(7)... A080635(n) = (-i*sqrt(3))^(n-1)*Sum_{k=1..n} k!*Stirling2(n,k) * (-1/2+sqrt(3)*i/6)^(k-1).
The row polynomials have their zeros on the vertical line Re(z) = -1/2 in the complex plane (this follows from the above connection with the ordered Bell polynomials, which have negative real zeros). - Peter Bala, Oct 23 2023