A185423 Ordered forests of k increasing plane unary-binary trees with n nodes.
1, 1, 2, 3, 6, 6, 9, 30, 36, 24, 39, 150, 270, 240, 120, 189, 918, 1980, 2520, 1800, 720, 1107, 6174, 16254, 25200, 25200, 15120, 5040, 7281, 47070, 142884, 266616, 327600, 272160, 141120, 40320, 54351, 394470, 1369710, 2948400, 4331880
Offset: 1
Examples
Triangle begins n\k|....1......2......3......4......5......6......7 =================================================== ..1|....1 ..2|....1......2 ..3|....3......6......6 ..4|....9.....30.....36.....24 ..5|...39....150....270....240....120 ..6|..189....918...1980...2520...1800....720 ..7|.1107...6174..16254..25200..25200..15120...5040 .. Examples of recurrence relation: T(5,3) = 270 = 3*(T(4,2) + T(4,3) + T(4,4)) = 3*(30+36+24); T(6,1) = 1*(T(5,0) + T(5,1) + T(5,2)) = 39+150. Examples of ordered forests: T(4,2) = 30. The 15 unordered forests consisting of two plane increasing unary-binary trees on 4 nodes are shown below. We can order the trees in a forest in two ways giving rise to 30 ordered forests. ......... ......... ...3..... .2...3... .3...2... ...|..... ..\./.... ..\./.... ...2..... ...1...4. ...1...4. ...|..... ......... ......... ...1...4. . ......... ......... ...4..... .2...4... .4...2... ...|..... ..\./.... ..\./.... ...2..... ...1...3. ...1...3. ...|..... ......... ......... ...1...3. . ......... ......... ...4..... .3...4... .4...3... ...|..... ..\./.... ..\./.... ...3..... ...1...2. ...1...2. ...|..... ......... ......... ...1...2. . ......... ......... ...4..... .3...4... .4...3... ...|..... ..\./.... ..\./.... ...3..... ...2...1. ...2...1. ...|..... ......... ......... ...2...1. . ......... ......... .......... ..2..4... ..3..4... ..4...3... ..|..|... ..|..|... ..|...|... ..1..3... ..1..2... ..1...2... ......... ......... ..........
Programs
-
Maple
#A185423 P := proc(n,x) description 'polynomial sequence P(n,x) A185415' if n = 0 return 1 else return x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1)) end proc: with combinat: T:=(n,k) -> add ((-1)^(k-j)*binomial(k,j)*P(n,j),j = 0..k): for n from 1 to 10 do seq(T(n,k),k = 1..n); end do;
-
PARI
{T(n,k)=if(n<1||k<1||k>n,0,if(n==1,if(k==1,1,0),k*(T(n-1,k-1)+T(n-1,k)+T(n-1,k+1))))}
Formula
TABLE ENTRIES
(1)... T(n,k) = Sum_{j = 0..k} (-1)^j*binomial(k,j)*P(n,j),
where P(n,x) are the polynomials described in A185415.
Compare (1) with the formula for the number of ordered set partitions
(2)... A019538(n,k) = Sum_{j = 0..k} (-1)^j*binomial(k,j)*j^n.
RECURRENCE RELATION
(3)... T(n+1,k) = k*(T(n,k-1) + T(n,k) + T(n,k+1))
GENERATING FUNCTION
Let E(t) = 1/2 + (sqrt(3)/2)*tan(sqrt(3)/2*t + Pi/6) be the e.g.f. for A080635.
The e.g.f. for the present triangle is
(4)... 1/(1 + x*(1 - E(t))) = Sum {n >= 0} R(n,x)*t^n/n!
= 1 + x*t + (x + 2*x^2)*t^2/2! + (3*x + 6*x^2 + 6*x^3)*t^3/3! + ....
ROW POLYNOMIALS
The ordered Bell polynomials OB(n,x) are the row polynomials of A019538 given by
(5)... OB(n,x) = Sum_{k = 1..n} k!*Stirling2(n,k)*x^k.
By comparing the e.g.f.s for A019538 and the present table we obtain the surprising identity
(6)... (-i*sqrt(3))^(n-1)*OB(n,x)/x = R(n,y)/y,
where i = sqrt(-1) and x = (sqrt(3)*i/3)*y + (-1/2+sqrt(3)*i/6).
RELATIONS WITH OTHER SEQUENCES
Column 1: A080635.
A185422(n,k) = T(n,k)/k!.
Setting y = 0 in (6) gives
(7)... A080635(n) = (-i*sqrt(3))^(n-1)*Sum_{k=1..n} k!*Stirling2(n,k) * (-1/2+sqrt(3)*i/6)^(k-1).
The row polynomials have their zeros on the vertical line Re(z) = -1/2 in the complex plane (this follows from the above connection with the ordered Bell polynomials, which have negative real zeros). - Peter Bala, Oct 23 2023
Comments