A185508 Third accumulation array, T, of the natural number array A000027, by antidiagonals.
1, 5, 6, 16, 29, 21, 41, 89, 99, 56, 91, 219, 295, 259, 126, 182, 469, 705, 755, 574, 252, 336, 910, 1470, 1765, 1645, 1134, 462, 582, 1638, 2786, 3605, 3780, 3206, 2058, 792, 957, 2778, 4914, 6706, 7595, 7266, 5754, 3498, 1287, 1507, 4488, 8190, 11634, 13916, 14406, 12894, 9690, 5643, 2002, 2288, 6963, 13035, 19110, 23814, 26068, 25284, 21510, 15510, 8723, 3003, 3367, 10439, 19965, 30030, 38640, 44100
Offset: 1
Examples
Northwest corner: 1 5 16 41 91 182 6 29 89 219 469 910 21 99 295 705 1470 2786 56 259 755 1765 3605 6706
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
h[n_,k_]:=k(k+1)(k+2)n(n+1)(n+2)*(4n^2+(5k+23)n+4k^2+3k+41)/2880; TableForm[Table[h[n,k],{n,1,10},{k,1,15}]] Table[h[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
-
PARI
{h(n,k) = k*(k+1)*(k+2)*n*(n+1)*(n+2)*(4*n^2+(5*k+23)*n +4*k^2 +3*k + 41)/2880}; for(n=1,10, for(k=1,n, print1(h(k, n-k+1), ", "))) \\ G. C. Greubel, Nov 23 2017
Formula
T(n,k) = F*(4n^2 + (5k+23)n + 4k^2 + 3k+41), where F = k(k+1)(k+2)n(n+1)(n+2)/2880.
Comments