cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A185550 Numbers not of the form ceiling(n^(3/2)); complement of A185549.

Original entry on oeis.org

2, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150
Offset: 1

Views

Author

Clark Kimberling, Jan 30 2011

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List.Ordered (minus)
    a185550 n = a185550_list !! (n-1)
    a185550_list = [0..] `minus` a185549_list
    -- Reinhard Zumkeller, Jul 24 2015
    
  • Mathematica
    f[n_]=Ceiling[n^(3/2)];
    t1=Table[f[n],{n,1,90}];t1  (* A185549 *)
    t2=Complement[Range[150], Table[f[n],{n,1,80}]];t2  (* A185550 *)
  • Python
    from sympy import integer_nthroot
    def A185550(n):
        def f(x): return n+integer_nthroot(x**2,3)[0]
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        return iterfun(f,n) # Chai Wah Wu, Sep 09 2024
Showing 1-1 of 1 results.