A185550 Numbers not of the form ceiling(n^(3/2)); complement of A185549.
2, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List.Ordered (minus) a185550 n = a185550_list !! (n-1) a185550_list = [0..] `minus` a185549_list -- Reinhard Zumkeller, Jul 24 2015
-
Mathematica
f[n_]=Ceiling[n^(3/2)]; t1=Table[f[n],{n,1,90}];t1 (* A185549 *) t2=Complement[Range[150], Table[f[n],{n,1,80}]];t2 (* A185550 *)
-
Python
from sympy import integer_nthroot def A185550(n): def f(x): return n+integer_nthroot(x**2,3)[0] def iterfun(f,n=0): m, k = n, f(n) while m != k: m, k = k, f(k) return m return iterfun(f,n) # Chai Wah Wu, Sep 09 2024