A232325 Engel expansion of 1 to the base Pi.
4, 12, 72, 2111, 14265, 70424, 308832, 4371476, 320218450, 1101000257, 14020589841, 102772320834, 963205851651, 5997003656523, 50649135127796, 640772902021920, 2101002284323870, 35029677728070645, 176996397541889098, 1433436623499128186
Offset: 0
Examples
Truncation F_5(z) = 1 - ( z/4 + z^2/(4*12) + z^3/(4*12*72) + z^4/(4*12*72*2111) + z^5/(4*12*72*2111*14265) ). The polynomial has a positive real zero at z = 3.14159 26535 (9...), which agrees with Pi to 10 decimal places. Comparison of generalized Engel expansions of 1 to the base Pi. A232325: Engel series expansion of 1 to the base Pi 1 = Pi/4 + Pi^2/(4*12) + Pi^3/(4*12*72) + Pi^4/(4*12*72*2111) + .... A232326: Pierce series expansion of 1 to the base Pi 1 = Pi/3 - Pi^2/(3*69) + Pi^3/(3*69*310) - Pi^4/(3*69*310*1017) + - .... Running the algorithm with the input values r = 1 and base -Pi produces the expansion 1 = Pi/3 - Pi^2/(3*70) - Pi^3/(3*70*740) + Pi^4/(3*70*740*6920) + - - + .... Running the algorithm with the input values r = -1 and base -Pi produces the expansion 1 = Pi/4 + Pi^2/(4*11) - Pi^3/(4*11*73) - Pi^4/(4*11*73*560) + + - - ....
Links
- Eric Weisstein's World of Mathematics, Engel Expansion
- Wikipedia, Engel Expansion
Programs
-
Maple
# Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1 map_iterate := proc(n,b,x) option remember; if n = 0 then x else -1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x)) end if end proc: # Define the terms of the expansion of x to the base b a := n -> ceil(evalf(b/map_iterate(n,b,x))): Digits:= 500: # Choose values for x and b x := 1: b:= Pi: seq(a(n), n = 0..19);
Formula
a(n) = ceiling(Pi/f^(n)(1)), where f^(n)(x) denotes the n-th iterate of the map f(x) = x/Pi*(ceiling(Pi/x)) - 1, with the convention that f^(0)(x) = x.
Engel series expansion of 1 to the base Pi:
1 = Pi/4 + Pi^2/(4*12) + Pi^3/(4*12*72) + Pi^4/(4*12*72*2111) + ....
The associated power series F(z) := 1 - ( z/4 + z^2/(4*12) + z^3/(4*12*72) + z^4/(4*12*72*2111) + ...) has a zero at z = Pi. Truncating the series F(z) to n terms produces a polynomial F_n(z) with rational coefficients which has a real zero close to Pi. See below for an example.
Comments