cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185576 Decimal expansion of Born's basic potential Pi_0.

Original entry on oeis.org

2, 8, 3, 7, 2, 9, 7, 4, 7, 9, 4, 8, 0, 6, 1, 9, 4, 7, 6, 6, 6, 5, 9, 1, 7, 1, 0, 4, 6, 0, 7, 7, 3, 8, 8, 2, 2, 3, 8, 9, 2, 1, 8, 7, 0, 2, 1, 5, 8, 4, 8, 3, 5, 9, 9, 0, 0, 3, 7, 1, 9, 0, 0, 6, 9, 9, 9, 2, 4, 7, 7, 1, 1, 1, 6, 2, 2, 7, 3, 3, 0, 9, 4, 7, 4, 0, 4, 1, 5, 3, 0, 7, 9, 2, 7, 1, 1, 0, 3, 5
Offset: 1

Views

Author

R. J. Mathar, Jan 31 2011

Keywords

Comments

Decimal expansion of Sum'_{m,n,p = -infinity..infinity} 1/(m^2 + n^2 + p^2)^s, analytic continuation to s=1/2. The prime at the sum symbol means the term at m=n=p=0 is omitted.

Examples

			2.8372974794806194766659171046...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 79.

Crossrefs

Programs

  • Mathematica
    digits = 100; k0 = 10; dk = 10; Clear[s]; s[k_] := s[k] = 7*(Pi/6) - 19/2*Log[2] + 4*Sum[(3 + 3*(-1)^m + (-1)^(m + n)) * Csch[Pi*Sqrt[m^2 + n^2]]/Sqrt[m^2 + n^2], {m, 1, k}, {n, 1, k}] // N[#, digits + 10] &; s[k0]; s[k = k0 + dk]; While[RealDigits[s[k], 10, digits + 5][[1]] != RealDigits[s[k - dk], 10, digits + 5][[1]], Print["s(", k, ") = ", s[k]]; k = k + dk]; RealDigits[s[k], 10, digits] // First (* Jean-François Alcover, Sep 10 2014 *)

Formula

Equals A085469/3 + A185577 + A185578.

Extensions

More terms from Jean-François Alcover, Sep 10 2014