A185577 Decimal expansion of Sum'_{m,n,p = -infinity..infinity} (-1)^m/sqrt(m^2 + n^2 + p^2), negated.
7, 7, 4, 3, 8, 6, 1, 4, 1, 4, 2, 4, 0, 0, 2, 8, 1, 5, 2, 1, 2, 7, 5, 1, 3, 8, 6, 4, 0, 6, 7, 8, 8, 7, 9, 8, 8, 5, 3, 1, 7, 1, 0, 4, 8, 1, 0, 3, 2, 1, 4, 4, 5, 9, 3, 0, 7, 2, 4, 0, 9, 6, 6, 4, 0, 2, 1, 4, 3, 5, 1, 9, 2, 1, 6, 3, 0, 6, 7, 8, 8, 7, 7, 8, 2, 3, 0, 9, 9, 7, 6, 7, 0, 9, 7, 0, 4, 8, 1, 6, 2, 9, 6, 6, 9
Offset: 0
Examples
0.77438614142400281521275138640678...
Links
- Y. Sakamoto, Madelung constants of simple crystals expressed in terms of Born's basic potentials of 15 figures, J. Chem. Phys. 28 (1958) 164, variable Pi_2.
- I. J. Zucker, Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures, J. Phys. A: Math. Gen. 8 (11) (1975) 1734, variable b(1).
- I. J. Zucker, Functional equations for poly-dimensional zeta functions and the evaluation of Madelung constants, J. Phys. A: Math. Gen. 9 (4) (1976) 499, variable b(1).
Programs
-
Mathematica
digits = 105; Clear[f]; f[n_, p_] := f[n, p] =(s = Sqrt[n^2 + p^2]; ((2 + (-1)^n)*Csch[s*Pi])/s // N[#, digits+10]&); f[m_] := f[m] = Pi/2 - (7*Log[2])/2 + 4*Sum[f[n, p], {n, 1, m}, {p, 1, m}] // RealDigits[#, 10, digits+10]& // First; f[0]; f[m=10]; While[f[m] != f[m-10], Print[m]; m = m+10]; f[m][[1 ;; digits]] (* Jean-François Alcover, Feb 20 2013 *)
Formula
Extensions
More terms from Jean-François Alcover, Feb 20 2013
Comments