cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185620 Triangular matrix T that satisfies: T^3 - T^2 + I = SHIFT_LEFT(T), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 10, 5, 1, 1, 1, 42, 27, 7, 1, 1, 1, 226, 173, 52, 9, 1, 1, 1, 1525, 1330, 442, 85, 11, 1, 1, 1, 12555, 12134, 4345, 897, 126, 13, 1, 1, 1, 123098, 129359, 49114, 10687, 1586, 175, 15, 1, 1, 1, 1408656, 1587501, 632104, 143335, 22156, 2557
Offset: 0

Views

Author

Paul D. Hanna, Feb 01 2011

Keywords

Examples

			Triangle T begins:
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 10, 5, 1, 1;
1, 42, 27, 7, 1, 1;
1, 226, 173, 52, 9, 1, 1;
1, 1525, 1330, 442, 85, 11, 1, 1;
1, 12555, 12134, 4345, 897, 126, 13, 1, 1;
1, 123098, 129359, 49114, 10687, 1586, 175, 15, 1, 1;
1, 1408656, 1587501, 632104, 143335, 22156, 2557, 232, 17, 1, 1;
1, 18499835, 22127494, 9167575, 2149761, 343091, 40936, 3858, 297, 19, 1, 1; ...
Matrix square T^2 begins:
1;
2, 1;
3, 2, 1;
6, 7, 2, 1;
18, 28, 11, 2, 1;
79, 142, 66, 15, 2, 1;
463, 913, 470, 120, 19, 2, 1;
3396, 7244, 3997, 1098, 190, 23, 2, 1;
...
Matrix cube T^3 begins:
1;
3, 1;
6, 3, 1;
16, 12, 3, 1;
60, 55, 18, 3, 1;
305, 315, 118, 24, 3, 1;
1988, 2243, 912, 205, 30, 3, 1;
15951, 19378, 8342, 1995, 316, 36, 3, 1;
...
Thus T^3 - T^2 + I begins:
1;
1, 1;
3, 1, 1;
10, 5, 1, 1;
42, 27, 7, 1, 1;
226, 173, 52, 9, 1, 1;
1525, 1330, 442, 85, 11, 1, 1;
12555, 12134, 4345, 897, 126, 13, 1, 1;
...
which equals T shifted left one column.
...
ALTERNATE GENERATING FORMULA.
Let U equal T shifted up one diagonal:
1;
1, 1;
1, 3, 1;
1, 10, 5, 1;
1, 42, 27, 7, 1;
1, 226, 173, 52, 9, 1;
1, 1525, 1330, 442, 85, 11, 1;
1, 12555, 12134, 4345, 897, 126, 13, 1;
...
then U*T^2 begins:
1;
3, 1;
10, 5, 1;
42, 27, 7, 1;
226, 173, 52, 9, 1;
1525, 1330, 442, 85, 11, 1;
12555, 12134, 4345, 897, 126, 13, 1;
...
which equals U shifted left one column.
		

Crossrefs

Cf. columns: A185621, A185622, A185623; A185624 (T^2), A185628 (T^3).
Cf. variants: A104445, A185641.

Programs

  • PARI
    {T(n, k)=local(A=Mat(1), B); for(m=1, n, B=A^3-A^2+A^0;
    A=matrix(m+1, m+1); for(i=1, m+1, for(j=1, i, if(i<2|j==i, A[i, j]=1,
    if(j==1, A[i, j]=1, A[i, j]=B[i-1, j-1]))))); return(A[n+1, k+1])}

Formula

Recurrence: T(n+1,k+1) = [T^3](n,k) - [T^2](n,k) + [T^0](n,k) for n>=k>=0, with T(n,0)=1 for n>=0.
Let U equal T shifted up one diagonal; then U*T^2 equals U shifted left one column.