A185652 Number of permutations of [n] having a shortest ascending run of length 2.
0, 0, 1, 0, 5, 18, 89, 519, 3853, 27555, 233431, 2167152, 21596120, 232817282, 2718706924, 33814848445, 448311181346, 6319365554730, 94225534689624, 1481940898130323, 24536143182460549, 426432943716156580, 7762187693343502658, 147704506384475066381
Offset: 0
Keywords
Examples
a(2) = 1: 12. a(4) = 5: 1324, 1423, 2314, 2413, 3412. a(5) = 18: 12435, 12534, 13245, 13425, 13524, 14235, 14523, 15234, 23145, 23415, 23514, 24135, 24513, 25134, 34125, 34512, 35124, 45123.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Programs
-
Mathematica
A[n_, k_] := A[n, k] = Module[{b}, b[u_, o_, t_] := b[u, o, t] = If[t + o <= k, (u + o)!, Sum[b[u + i - 1, o - i, Min[k, t] + 1], {i, 1, o}] + If[t <= k, u (u + o - 1)!, Sum[b[u - i, o + i - 1, 1], {i, 1, u}]]]; Sum[b[j - 1, n - j, 1], {j, 1, n}]]; a[n_] := A[n, 2] - A[n, 1]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 26 2021, after Alois P. Heinz in A064315 *)
Formula
a(n) ~ c * (3*sqrt(3)/(2*Pi))^n * n!, where c = 0.45178068752734823... . - Vaclav Kotesovec, Sep 06 2014