cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185699 Expansion of (11 * E_2(x^11) - E_2(x)) / 2 in powers of x where E_2() is an Eisenstein series.

Original entry on oeis.org

5, 12, 36, 48, 84, 72, 144, 96, 180, 156, 216, 12, 336, 168, 288, 288, 372, 216, 468, 240, 504, 384, 36, 288, 720, 372, 504, 480, 672, 360, 864, 384, 756, 48, 648, 576, 1092, 456, 720, 672, 1080, 504, 1152, 528, 84, 936, 864, 576, 1488, 684, 1116, 864, 1176, 648
Offset: 0

Views

Author

Michael Somos, Feb 10 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 5 + 12*x + 36*x^2 + 48*x^3 + 84*x^4 + 72*x^5 + 144*x^6 + 96*x^7 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 480, Entry 8(i).
  • Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall/CRC, Boca Raton, London, New York, p. 246 (corrected).

Crossrefs

Programs

  • Mathematica
    terms = 54;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    (11*E2[x^11] - E2[x])/2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
  • PARI
    {a(n) = if( n<1, 5 * (n==0), 12 * (sigma( n) - if( n%11, 0, 11 * sigma( n / 11))))};

Formula

Expansion of 5 * (phi(x) * phi(x^11))^2 - 20 * x * (f(x) * f(x^11))^2 + 32 * x^2 * (f(-x^2) * f(-x^22))^2 - 20 * x^3 * (psi(-x) * psi(-x^11))^2 in powers of x where f(), phi(), psi() are Ramanujan theta functions.
Expansion of 5 + 12*Sum_{n>=1} Chi0(n)*n*q^n / (1 - q^n), where Chi0(n) = 1 if gcd(n,11) = 1 and 0 otherwise. See the Moreno-Wagstaff reference p. 246, second equation multiplied by 12 (a misprint has been corrected, after mail exchange with C. J. Moreno). - Wolfdieter Lang, Jan 02 2017